MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem1 Structured version   Visualization version   GIF version

Theorem kqreglem1 23639
Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem1
Dummy variables 𝑚 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqtopon 23625 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
32adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
4 topontop 22809 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Top)
6 toponss 22823 . . . . . . . 8 (((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
73, 6sylan 579 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
87sselda 3979 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝑏 ∈ ran 𝐹)
91kqffn 23623 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
109ad3antrrr 729 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝐹 Fn 𝑋)
11 fvelrnb 6954 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
1210, 11syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
138, 12mpbid 231 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑧𝑋 (𝐹𝑧) = 𝑏)
14 simpllr 775 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐽 ∈ Reg)
151kqid 23626 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
1615ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
17 simplr 768 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑎 ∈ (KQ‘𝐽))
18 cnima 23163 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝐹𝑎) ∈ 𝐽)
1916, 17, 18syl2anc 583 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → (𝐹𝑎) ∈ 𝐽)
209adantr 480 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
2120adantr 480 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋)
22 elpreima 7062 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2423biimpar 477 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑧 ∈ (𝐹𝑎))
25 regsep 23232 . . . . . . . . . . . . 13 ((𝐽 ∈ Reg ∧ (𝐹𝑎) ∈ 𝐽𝑧 ∈ (𝐹𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
2614, 19, 24, 25syl3anc 1369 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
27 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ (TopOn‘𝑋))
28 simprl 770 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤𝐽)
291kqopn 23632 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
3027, 28, 29syl2anc 583 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ∈ (KQ‘𝐽))
31 simprrl 780 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑤)
32 simplrl 776 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑋)
331kqfvima 23628 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑧𝑋) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3427, 28, 32, 33syl3anc 1369 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3531, 34mpbid 231 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑧) ∈ (𝐹𝑤))
36 topontop 22809 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3727, 36syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ Top)
38 elssuni 4936 . . . . . . . . . . . . . . . . . 18 (𝑤𝐽𝑤 𝐽)
3938ad2antrl 727 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 𝐽)
40 eqid 2728 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
4140clscld 22945 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
4237, 39, 41syl2anc 583 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
431kqcld 23633 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4427, 42, 43syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4540sscls 22954 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
4637, 39, 45syl2anc 583 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
47 imass2 6101 . . . . . . . . . . . . . . . 16 (𝑤 ⊆ ((cls‘𝐽)‘𝑤) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
4846, 47syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
49 eqid 2728 . . . . . . . . . . . . . . . 16 (KQ‘𝐽) = (KQ‘𝐽)
5049clsss2 22970 . . . . . . . . . . . . . . 15 (((𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5144, 48, 50syl2anc 583 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5220ad3antrrr 729 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐹 Fn 𝑋)
53 fnfun 6649 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝑋 → Fun 𝐹)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → Fun 𝐹)
55 simprrr 781 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎))
56 funimass2 6631 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5754, 55, 56syl2anc 583 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5851, 57sstrd 3989 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)
59 eleq2 2818 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → ((𝐹𝑧) ∈ 𝑚 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
60 fveq2 6892 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑤) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹𝑤)))
6160sseq1d 4010 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎 ↔ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎))
6259, 61anbi12d 631 . . . . . . . . . . . . . 14 (𝑚 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)))
6362rspcev 3608 . . . . . . . . . . . . 13 (((𝐹𝑤) ∈ (KQ‘𝐽) ∧ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6430, 35, 58, 63syl12anc 836 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6526, 64rexlimddv 3157 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6665expr 456 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
67 eleq1 2817 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑎𝑏𝑎))
68 eleq1 2817 . . . . . . . . . . . . 13 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑚𝑏𝑚))
6968anbi1d 630 . . . . . . . . . . . 12 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ (𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7069rexbidv 3174 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → (∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7167, 70imbi12d 344 . . . . . . . . . 10 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)) ↔ (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7266, 71syl5ibcom 244 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7372com23 86 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → (𝑏𝑎 → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7473imp 406 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) ∧ 𝑏𝑎) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7574an32s 651 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7675rexlimdva 3151 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (∃𝑧𝑋 (𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7713, 76mpd 15 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7877anasss 466 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑎 ∈ (KQ‘𝐽) ∧ 𝑏𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7978ralrimivva 3196 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
80 isreg 23230 . 2 ((KQ‘𝐽) ∈ Reg ↔ ((KQ‘𝐽) ∈ Top ∧ ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
815, 79, 80sylanbrc 582 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3057  wrex 3066  {crab 3428  wss 3945   cuni 4904  cmpt 5226  ccnv 5672  ran crn 5674  cima 5676  Fun wfun 6537   Fn wfn 6538  cfv 6543  (class class class)co 7415  Topctop 22789  TopOnctopon 22806  Clsdccld 22914  clsccl 22916   Cn ccn 23122  Regcreg 23207  KQckq 23591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-map 8841  df-qtop 17483  df-top 22790  df-topon 22807  df-cld 22917  df-cls 22919  df-cn 23125  df-reg 23214  df-kq 23592
This theorem is referenced by:  kqreg  23649
  Copyright terms: Public domain W3C validator