MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem1 Structured version   Visualization version   GIF version

Theorem kqreglem1 23656
Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem1
Dummy variables 𝑚 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqtopon 23642 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
32adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
4 topontop 22828 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Top)
6 toponss 22842 . . . . . . . 8 (((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
73, 6sylan 580 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
87sselda 3929 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝑏 ∈ ran 𝐹)
91kqffn 23640 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
109ad3antrrr 730 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝐹 Fn 𝑋)
11 fvelrnb 6882 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
1210, 11syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
138, 12mpbid 232 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑧𝑋 (𝐹𝑧) = 𝑏)
14 simpllr 775 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐽 ∈ Reg)
151kqid 23643 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
1615ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
17 simplr 768 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑎 ∈ (KQ‘𝐽))
18 cnima 23180 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝐹𝑎) ∈ 𝐽)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → (𝐹𝑎) ∈ 𝐽)
209adantr 480 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
2120adantr 480 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋)
22 elpreima 6991 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2423biimpar 477 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑧 ∈ (𝐹𝑎))
25 regsep 23249 . . . . . . . . . . . . 13 ((𝐽 ∈ Reg ∧ (𝐹𝑎) ∈ 𝐽𝑧 ∈ (𝐹𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
2614, 19, 24, 25syl3anc 1373 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
27 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ (TopOn‘𝑋))
28 simprl 770 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤𝐽)
291kqopn 23649 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ∈ (KQ‘𝐽))
31 simprrl 780 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑤)
32 simplrl 776 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑋)
331kqfvima 23645 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑧𝑋) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3427, 28, 32, 33syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3531, 34mpbid 232 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑧) ∈ (𝐹𝑤))
36 topontop 22828 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3727, 36syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ Top)
38 elssuni 4887 . . . . . . . . . . . . . . . . . 18 (𝑤𝐽𝑤 𝐽)
3938ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 𝐽)
40 eqid 2731 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
4140clscld 22962 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
4237, 39, 41syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
431kqcld 23650 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4427, 42, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4540sscls 22971 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
4637, 39, 45syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
47 imass2 6050 . . . . . . . . . . . . . . . 16 (𝑤 ⊆ ((cls‘𝐽)‘𝑤) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
4846, 47syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
49 eqid 2731 . . . . . . . . . . . . . . . 16 (KQ‘𝐽) = (KQ‘𝐽)
5049clsss2 22987 . . . . . . . . . . . . . . 15 (((𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5144, 48, 50syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5220ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐹 Fn 𝑋)
53 fnfun 6581 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝑋 → Fun 𝐹)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → Fun 𝐹)
55 simprrr 781 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎))
56 funimass2 6564 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5754, 55, 56syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5851, 57sstrd 3940 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)
59 eleq2 2820 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → ((𝐹𝑧) ∈ 𝑚 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
60 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑤) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹𝑤)))
6160sseq1d 3961 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎 ↔ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎))
6259, 61anbi12d 632 . . . . . . . . . . . . . 14 (𝑚 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)))
6362rspcev 3572 . . . . . . . . . . . . 13 (((𝐹𝑤) ∈ (KQ‘𝐽) ∧ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6430, 35, 58, 63syl12anc 836 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6526, 64rexlimddv 3139 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6665expr 456 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
67 eleq1 2819 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑎𝑏𝑎))
68 eleq1 2819 . . . . . . . . . . . . 13 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑚𝑏𝑚))
6968anbi1d 631 . . . . . . . . . . . 12 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ (𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7069rexbidv 3156 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → (∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7167, 70imbi12d 344 . . . . . . . . . 10 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)) ↔ (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7266, 71syl5ibcom 245 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7372com23 86 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → (𝑏𝑎 → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7473imp 406 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) ∧ 𝑏𝑎) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7574an32s 652 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7675rexlimdva 3133 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (∃𝑧𝑋 (𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7713, 76mpd 15 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7877anasss 466 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑎 ∈ (KQ‘𝐽) ∧ 𝑏𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7978ralrimivva 3175 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
80 isreg 23247 . 2 ((KQ‘𝐽) ∈ Reg ↔ ((KQ‘𝐽) ∈ Top ∧ ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
815, 79, 80sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  wss 3897   cuni 4856  cmpt 5170  ccnv 5613  ran crn 5615  cima 5617  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  Topctop 22808  TopOnctopon 22825  Clsdccld 22931  clsccl 22933   Cn ccn 23139  Regcreg 23224  KQckq 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-qtop 17411  df-top 22809  df-topon 22826  df-cld 22934  df-cls 22936  df-cn 23142  df-reg 23231  df-kq 23609
This theorem is referenced by:  kqreg  23666
  Copyright terms: Public domain W3C validator