MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem1 Structured version   Visualization version   GIF version

Theorem kqreglem1 23679
Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem1
Dummy variables 𝑚 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqtopon 23665 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
32adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
4 topontop 22851 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Top)
6 toponss 22865 . . . . . . . 8 (((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
73, 6sylan 580 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
87sselda 3958 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝑏 ∈ ran 𝐹)
91kqffn 23663 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
109ad3antrrr 730 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝐹 Fn 𝑋)
11 fvelrnb 6939 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
1210, 11syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
138, 12mpbid 232 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑧𝑋 (𝐹𝑧) = 𝑏)
14 simpllr 775 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐽 ∈ Reg)
151kqid 23666 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
1615ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
17 simplr 768 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑎 ∈ (KQ‘𝐽))
18 cnima 23203 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝐹𝑎) ∈ 𝐽)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → (𝐹𝑎) ∈ 𝐽)
209adantr 480 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
2120adantr 480 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋)
22 elpreima 7048 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2423biimpar 477 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑧 ∈ (𝐹𝑎))
25 regsep 23272 . . . . . . . . . . . . 13 ((𝐽 ∈ Reg ∧ (𝐹𝑎) ∈ 𝐽𝑧 ∈ (𝐹𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
2614, 19, 24, 25syl3anc 1373 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
27 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ (TopOn‘𝑋))
28 simprl 770 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤𝐽)
291kqopn 23672 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ∈ (KQ‘𝐽))
31 simprrl 780 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑤)
32 simplrl 776 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑋)
331kqfvima 23668 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑧𝑋) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3427, 28, 32, 33syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3531, 34mpbid 232 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑧) ∈ (𝐹𝑤))
36 topontop 22851 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3727, 36syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ Top)
38 elssuni 4913 . . . . . . . . . . . . . . . . . 18 (𝑤𝐽𝑤 𝐽)
3938ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 𝐽)
40 eqid 2735 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
4140clscld 22985 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
4237, 39, 41syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
431kqcld 23673 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4427, 42, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4540sscls 22994 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
4637, 39, 45syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
47 imass2 6089 . . . . . . . . . . . . . . . 16 (𝑤 ⊆ ((cls‘𝐽)‘𝑤) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
4846, 47syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
49 eqid 2735 . . . . . . . . . . . . . . . 16 (KQ‘𝐽) = (KQ‘𝐽)
5049clsss2 23010 . . . . . . . . . . . . . . 15 (((𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5144, 48, 50syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5220ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐹 Fn 𝑋)
53 fnfun 6638 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝑋 → Fun 𝐹)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → Fun 𝐹)
55 simprrr 781 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎))
56 funimass2 6619 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5754, 55, 56syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5851, 57sstrd 3969 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)
59 eleq2 2823 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → ((𝐹𝑧) ∈ 𝑚 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
60 fveq2 6876 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑤) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹𝑤)))
6160sseq1d 3990 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎 ↔ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎))
6259, 61anbi12d 632 . . . . . . . . . . . . . 14 (𝑚 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)))
6362rspcev 3601 . . . . . . . . . . . . 13 (((𝐹𝑤) ∈ (KQ‘𝐽) ∧ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6430, 35, 58, 63syl12anc 836 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6526, 64rexlimddv 3147 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6665expr 456 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
67 eleq1 2822 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑎𝑏𝑎))
68 eleq1 2822 . . . . . . . . . . . . 13 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑚𝑏𝑚))
6968anbi1d 631 . . . . . . . . . . . 12 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ (𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7069rexbidv 3164 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → (∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7167, 70imbi12d 344 . . . . . . . . . 10 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)) ↔ (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7266, 71syl5ibcom 245 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7372com23 86 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → (𝑏𝑎 → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7473imp 406 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) ∧ 𝑏𝑎) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7574an32s 652 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7675rexlimdva 3141 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (∃𝑧𝑋 (𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7713, 76mpd 15 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7877anasss 466 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑎 ∈ (KQ‘𝐽) ∧ 𝑏𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7978ralrimivva 3187 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
80 isreg 23270 . 2 ((KQ‘𝐽) ∈ Reg ↔ ((KQ‘𝐽) ∈ Top ∧ ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
815, 79, 80sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  wss 3926   cuni 4883  cmpt 5201  ccnv 5653  ran crn 5655  cima 5657  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405  Topctop 22831  TopOnctopon 22848  Clsdccld 22954  clsccl 22956   Cn ccn 23162  Regcreg 23247  KQckq 23631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-qtop 17521  df-top 22832  df-topon 22849  df-cld 22957  df-cls 22959  df-cn 23165  df-reg 23254  df-kq 23632
This theorem is referenced by:  kqreg  23689
  Copyright terms: Public domain W3C validator