MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem1 Structured version   Visualization version   GIF version

Theorem kqreglem1 23628
Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem1
Dummy variables 𝑚 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqtopon 23614 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
32adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
4 topontop 22800 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Top)
6 toponss 22814 . . . . . . . 8 (((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
73, 6sylan 580 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
87sselda 3946 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝑏 ∈ ran 𝐹)
91kqffn 23612 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
109ad3antrrr 730 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝐹 Fn 𝑋)
11 fvelrnb 6921 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
1210, 11syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
138, 12mpbid 232 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑧𝑋 (𝐹𝑧) = 𝑏)
14 simpllr 775 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐽 ∈ Reg)
151kqid 23615 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
1615ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
17 simplr 768 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑎 ∈ (KQ‘𝐽))
18 cnima 23152 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝐹𝑎) ∈ 𝐽)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → (𝐹𝑎) ∈ 𝐽)
209adantr 480 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
2120adantr 480 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋)
22 elpreima 7030 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2423biimpar 477 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑧 ∈ (𝐹𝑎))
25 regsep 23221 . . . . . . . . . . . . 13 ((𝐽 ∈ Reg ∧ (𝐹𝑎) ∈ 𝐽𝑧 ∈ (𝐹𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
2614, 19, 24, 25syl3anc 1373 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
27 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ (TopOn‘𝑋))
28 simprl 770 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤𝐽)
291kqopn 23621 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ∈ (KQ‘𝐽))
31 simprrl 780 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑤)
32 simplrl 776 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑋)
331kqfvima 23617 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑧𝑋) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3427, 28, 32, 33syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3531, 34mpbid 232 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑧) ∈ (𝐹𝑤))
36 topontop 22800 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3727, 36syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ Top)
38 elssuni 4901 . . . . . . . . . . . . . . . . . 18 (𝑤𝐽𝑤 𝐽)
3938ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 𝐽)
40 eqid 2729 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
4140clscld 22934 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
4237, 39, 41syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
431kqcld 23622 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4427, 42, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4540sscls 22943 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
4637, 39, 45syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
47 imass2 6073 . . . . . . . . . . . . . . . 16 (𝑤 ⊆ ((cls‘𝐽)‘𝑤) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
4846, 47syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
49 eqid 2729 . . . . . . . . . . . . . . . 16 (KQ‘𝐽) = (KQ‘𝐽)
5049clsss2 22959 . . . . . . . . . . . . . . 15 (((𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5144, 48, 50syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5220ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐹 Fn 𝑋)
53 fnfun 6618 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝑋 → Fun 𝐹)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → Fun 𝐹)
55 simprrr 781 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎))
56 funimass2 6599 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5754, 55, 56syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5851, 57sstrd 3957 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)
59 eleq2 2817 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → ((𝐹𝑧) ∈ 𝑚 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
60 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑤) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹𝑤)))
6160sseq1d 3978 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎 ↔ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎))
6259, 61anbi12d 632 . . . . . . . . . . . . . 14 (𝑚 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)))
6362rspcev 3588 . . . . . . . . . . . . 13 (((𝐹𝑤) ∈ (KQ‘𝐽) ∧ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6430, 35, 58, 63syl12anc 836 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6526, 64rexlimddv 3140 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6665expr 456 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
67 eleq1 2816 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑎𝑏𝑎))
68 eleq1 2816 . . . . . . . . . . . . 13 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑚𝑏𝑚))
6968anbi1d 631 . . . . . . . . . . . 12 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ (𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7069rexbidv 3157 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → (∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7167, 70imbi12d 344 . . . . . . . . . 10 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)) ↔ (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7266, 71syl5ibcom 245 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7372com23 86 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → (𝑏𝑎 → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7473imp 406 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) ∧ 𝑏𝑎) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7574an32s 652 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7675rexlimdva 3134 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (∃𝑧𝑋 (𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7713, 76mpd 15 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7877anasss 466 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑎 ∈ (KQ‘𝐽) ∧ 𝑏𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7978ralrimivva 3180 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
80 isreg 23219 . 2 ((KQ‘𝐽) ∈ Reg ↔ ((KQ‘𝐽) ∈ Top ∧ ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
815, 79, 80sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914   cuni 4871  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797  Clsdccld 22903  clsccl 22905   Cn ccn 23111  Regcreg 23196  KQckq 23580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-qtop 17470  df-top 22781  df-topon 22798  df-cld 22906  df-cls 22908  df-cn 23114  df-reg 23203  df-kq 23581
This theorem is referenced by:  kqreg  23638
  Copyright terms: Public domain W3C validator