MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem1 Structured version   Visualization version   GIF version

Theorem kqreglem1 22892
Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem1
Dummy variables 𝑚 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqtopon 22878 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
32adantr 481 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
4 topontop 22062 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Top)
6 toponss 22076 . . . . . . . 8 (((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
73, 6sylan 580 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝑎 ⊆ ran 𝐹)
87sselda 3921 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝑏 ∈ ran 𝐹)
91kqffn 22876 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
109ad3antrrr 727 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → 𝐹 Fn 𝑋)
11 fvelrnb 6830 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
1210, 11syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (𝑏 ∈ ran 𝐹 ↔ ∃𝑧𝑋 (𝐹𝑧) = 𝑏))
138, 12mpbid 231 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑧𝑋 (𝐹𝑧) = 𝑏)
14 simpllr 773 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐽 ∈ Reg)
151kqid 22879 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
1615ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
17 simplr 766 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑎 ∈ (KQ‘𝐽))
18 cnima 22416 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝐹𝑎) ∈ 𝐽)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → (𝐹𝑎) ∈ 𝐽)
209adantr 481 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
2120adantr 481 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → 𝐹 Fn 𝑋)
22 elpreima 6935 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)))
2423biimpar 478 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → 𝑧 ∈ (𝐹𝑎))
25 regsep 22485 . . . . . . . . . . . . 13 ((𝐽 ∈ Reg ∧ (𝐹𝑎) ∈ 𝐽𝑧 ∈ (𝐹𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
2614, 19, 24, 25syl3anc 1370 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑤𝐽 (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))
27 simp-4l 780 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ (TopOn‘𝑋))
28 simprl 768 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤𝐽)
291kqopn 22885 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ∈ (KQ‘𝐽))
31 simprrl 778 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑤)
32 simplrl 774 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑧𝑋)
331kqfvima 22881 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑧𝑋) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3427, 28, 32, 33syl3anc 1370 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝑧𝑤 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
3531, 34mpbid 231 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑧) ∈ (𝐹𝑤))
36 topontop 22062 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3727, 36syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐽 ∈ Top)
38 elssuni 4871 . . . . . . . . . . . . . . . . . 18 (𝑤𝐽𝑤 𝐽)
3938ad2antrl 725 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 𝐽)
40 eqid 2738 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
4140clscld 22198 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
4237, 39, 41syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽))
431kqcld 22886 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑤) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4427, 42, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)))
4540sscls 22207 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
4637, 39, 45syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝑤 ⊆ ((cls‘𝐽)‘𝑤))
47 imass2 6010 . . . . . . . . . . . . . . . 16 (𝑤 ⊆ ((cls‘𝐽)‘𝑤) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
4846, 47syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
49 eqid 2738 . . . . . . . . . . . . . . . 16 (KQ‘𝐽) = (KQ‘𝐽)
5049clsss2 22223 . . . . . . . . . . . . . . 15 (((𝐹 “ ((cls‘𝐽)‘𝑤)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5144, 48, 50syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑤)))
5220ad3antrrr 727 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → 𝐹 Fn 𝑋)
53 fnfun 6533 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝑋 → Fun 𝐹)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → Fun 𝐹)
55 simprrr 779 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎))
56 funimass2 6517 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5754, 55, 56syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → (𝐹 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑎)
5851, 57sstrd 3931 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)
59 eleq2 2827 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → ((𝐹𝑧) ∈ 𝑚 ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
60 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑤) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹𝑤)))
6160sseq1d 3952 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑤) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎 ↔ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎))
6259, 61anbi12d 631 . . . . . . . . . . . . . 14 (𝑚 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)))
6362rspcev 3561 . . . . . . . . . . . . 13 (((𝐹𝑤) ∈ (KQ‘𝐽) ∧ ((𝐹𝑧) ∈ (𝐹𝑤) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑤)) ⊆ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6430, 35, 58, 63syl12anc 834 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) ∧ (𝑤𝐽 ∧ (𝑧𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝐹𝑎)))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6526, 64rexlimddv 3220 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ (𝑧𝑋 ∧ (𝐹𝑧) ∈ 𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
6665expr 457 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
67 eleq1 2826 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑎𝑏𝑎))
68 eleq1 2826 . . . . . . . . . . . . 13 ((𝐹𝑧) = 𝑏 → ((𝐹𝑧) ∈ 𝑚𝑏𝑚))
6968anbi1d 630 . . . . . . . . . . . 12 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ (𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7069rexbidv 3226 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑏 → (∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎) ↔ ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7167, 70imbi12d 345 . . . . . . . . . 10 ((𝐹𝑧) = 𝑏 → (((𝐹𝑧) ∈ 𝑎 → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)) ↔ (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7266, 71syl5ibcom 244 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → (𝑏𝑎 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7372com23 86 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) → (𝑏𝑎 → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))))
7473imp 407 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑧𝑋) ∧ 𝑏𝑎) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7574an32s 649 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) ∧ 𝑧𝑋) → ((𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7675rexlimdva 3213 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → (∃𝑧𝑋 (𝐹𝑧) = 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
7713, 76mpd 15 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ 𝑎 ∈ (KQ‘𝐽)) ∧ 𝑏𝑎) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7877anasss 467 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑎 ∈ (KQ‘𝐽) ∧ 𝑏𝑎)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
7978ralrimivva 3123 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎))
80 isreg 22483 . 2 ((KQ‘𝐽) ∈ Reg ↔ ((KQ‘𝐽) ∈ Top ∧ ∀𝑎 ∈ (KQ‘𝐽)∀𝑏𝑎𝑚 ∈ (KQ‘𝐽)(𝑏𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑎)))
815, 79, 80sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887   cuni 4839  cmpt 5157  ccnv 5588  ran crn 5590  cima 5592  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275  Topctop 22042  TopOnctopon 22059  Clsdccld 22167  clsccl 22169   Cn ccn 22375  Regcreg 22460  KQckq 22844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-qtop 17218  df-top 22043  df-topon 22060  df-cld 22170  df-cls 22172  df-cn 22378  df-reg 22467  df-kq 22845
This theorem is referenced by:  kqreg  22902
  Copyright terms: Public domain W3C validator