Step | Hyp | Ref
| Expression |
1 | | topontop 21970 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
2 | 1 | adantr 480 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Top) |
3 | | simplr 765 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → (KQ‘𝐽) ∈ Reg) |
4 | | simpll 763 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | | simprl 767 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → 𝑧 ∈ 𝐽) |
6 | | kqval.2 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
7 | 6 | kqopn 22793 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → (𝐹 “ 𝑧) ∈ (KQ‘𝐽)) |
8 | 4, 5, 7 | syl2anc 583 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → (𝐹 “ 𝑧) ∈ (KQ‘𝐽)) |
9 | | simprr 769 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → 𝑤 ∈ 𝑧) |
10 | | toponss 21984 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
11 | 4, 5, 10 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → 𝑧 ⊆ 𝑋) |
12 | 11, 9 | sseldd 3918 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → 𝑤 ∈ 𝑋) |
13 | 6 | kqfvima 22789 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋) → (𝑤 ∈ 𝑧 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑧))) |
14 | 4, 5, 12, 13 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → (𝑤 ∈ 𝑧 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑧))) |
15 | 9, 14 | mpbid 231 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → (𝐹‘𝑤) ∈ (𝐹 “ 𝑧)) |
16 | | regsep 22393 |
. . . . 5
⊢
(((KQ‘𝐽)
∈ Reg ∧ (𝐹 “
𝑧) ∈ (KQ‘𝐽) ∧ (𝐹‘𝑤) ∈ (𝐹 “ 𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧))) |
17 | 3, 8, 15, 16 | syl3anc 1369 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧))) |
18 | 4 | adantr 480 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → 𝐽 ∈ (TopOn‘𝑋)) |
19 | 6 | kqid 22787 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
20 | 18, 19 | syl 17 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
21 | | simprl 767 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → 𝑛 ∈ (KQ‘𝐽)) |
22 | | cnima 22324 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑛 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑛) ∈ 𝐽) |
23 | 20, 21, 22 | syl2anc 583 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ 𝑛) ∈ 𝐽) |
24 | 12 | adantr 480 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ∈ 𝑋) |
25 | | simprrl 777 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (𝐹‘𝑤) ∈ 𝑛) |
26 | 6 | kqffn 22784 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
27 | | elpreima 6917 |
. . . . . . 7
⊢ (𝐹 Fn 𝑋 → (𝑤 ∈ (◡𝐹 “ 𝑛) ↔ (𝑤 ∈ 𝑋 ∧ (𝐹‘𝑤) ∈ 𝑛))) |
28 | 18, 26, 27 | 3syl 18 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (𝑤 ∈ (◡𝐹 “ 𝑛) ↔ (𝑤 ∈ 𝑋 ∧ (𝐹‘𝑤) ∈ 𝑛))) |
29 | 24, 25, 28 | mpbir2and 709 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ∈ (◡𝐹 “ 𝑛)) |
30 | 6 | kqtopon 22786 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
31 | | topontop 21970 |
. . . . . . . . . 10
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
(KQ‘𝐽) ∈
Top) |
32 | 18, 30, 31 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (KQ‘𝐽) ∈ Top) |
33 | | elssuni 4868 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (KQ‘𝐽) → 𝑛 ⊆ ∪
(KQ‘𝐽)) |
34 | 33 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → 𝑛 ⊆ ∪
(KQ‘𝐽)) |
35 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ (KQ‘𝐽) = ∪
(KQ‘𝐽) |
36 | 35 | clscld 22106 |
. . . . . . . . 9
⊢
(((KQ‘𝐽)
∈ Top ∧ 𝑛 ⊆
∪ (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽))) |
37 | 32, 34, 36 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽))) |
38 | | cnclima 22327 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽)) |
39 | 20, 37, 38 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽)) |
40 | 35 | sscls 22115 |
. . . . . . . . 9
⊢
(((KQ‘𝐽)
∈ Top ∧ 𝑛 ⊆
∪ (KQ‘𝐽)) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛)) |
41 | 32, 34, 40 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛)) |
42 | | imass2 5999 |
. . . . . . . 8
⊢ (𝑛 ⊆
((cls‘(KQ‘𝐽))‘𝑛) → (◡𝐹 “ 𝑛) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) |
43 | 41, 42 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ 𝑛) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) |
44 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
45 | 44 | clsss2 22131 |
. . . . . . 7
⊢ (((◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽) ∧ (◡𝐹 “ 𝑛) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑛)) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) |
46 | 39, 43, 45 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑛)) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) |
47 | | simprrr 778 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)) |
48 | | imass2 5999 |
. . . . . . . 8
⊢
(((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (◡𝐹 “ (𝐹 “ 𝑧))) |
49 | 47, 48 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (◡𝐹 “ (𝐹 “ 𝑧))) |
50 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → 𝑧 ∈ 𝐽) |
51 | 6 | kqsat 22790 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑧)) = 𝑧) |
52 | 18, 50, 51 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ (𝐹 “ 𝑧)) = 𝑧) |
53 | 49, 52 | sseqtrd 3957 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ 𝑧) |
54 | 46, 53 | sstrd 3927 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑛)) ⊆ 𝑧) |
55 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑚 = (◡𝐹 “ 𝑛) → (𝑤 ∈ 𝑚 ↔ 𝑤 ∈ (◡𝐹 “ 𝑛))) |
56 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = (◡𝐹 “ 𝑛) → ((cls‘𝐽)‘𝑚) = ((cls‘𝐽)‘(◡𝐹 “ 𝑛))) |
57 | 56 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑚 = (◡𝐹 “ 𝑛) → (((cls‘𝐽)‘𝑚) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑛)) ⊆ 𝑧)) |
58 | 55, 57 | anbi12d 630 |
. . . . . 6
⊢ (𝑚 = (◡𝐹 “ 𝑛) → ((𝑤 ∈ 𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧) ↔ (𝑤 ∈ (◡𝐹 “ 𝑛) ∧ ((cls‘𝐽)‘(◡𝐹 “ 𝑛)) ⊆ 𝑧))) |
59 | 58 | rspcev 3552 |
. . . . 5
⊢ (((◡𝐹 “ 𝑛) ∈ 𝐽 ∧ (𝑤 ∈ (◡𝐹 “ 𝑛) ∧ ((cls‘𝐽)‘(◡𝐹 “ 𝑛)) ⊆ 𝑧)) → ∃𝑚 ∈ 𝐽 (𝑤 ∈ 𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧)) |
60 | 23, 29, 54, 59 | syl12anc 833 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹‘𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹 “ 𝑧)))) → ∃𝑚 ∈ 𝐽 (𝑤 ∈ 𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧)) |
61 | 17, 60 | rexlimddv 3219 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧)) → ∃𝑚 ∈ 𝐽 (𝑤 ∈ 𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧)) |
62 | 61 | ralrimivva 3114 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) →
∀𝑧 ∈ 𝐽 ∀𝑤 ∈ 𝑧 ∃𝑚 ∈ 𝐽 (𝑤 ∈ 𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧)) |
63 | | isreg 22391 |
. 2
⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑧 ∈ 𝐽 ∀𝑤 ∈ 𝑧 ∃𝑚 ∈ 𝐽 (𝑤 ∈ 𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))) |
64 | 2, 62, 63 | sylanbrc 582 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg) |