MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem2 Structured version   Visualization version   GIF version

Theorem kqreglem2 22801
Description: If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem2
Dummy variables 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 21970 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Top)
3 simplr 765 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (KQ‘𝐽) ∈ Reg)
4 simpll 763 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝐽 ∈ (TopOn‘𝑋))
5 simprl 767 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑧𝐽)
6 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
76kqopn 22793 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
84, 5, 7syl2anc 583 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝐹𝑧) ∈ (KQ‘𝐽))
9 simprr 769 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑤𝑧)
10 toponss 21984 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
114, 5, 10syl2anc 583 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑧𝑋)
1211, 9sseldd 3918 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑤𝑋)
136kqfvima 22789 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽𝑤𝑋) → (𝑤𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
144, 5, 12, 13syl3anc 1369 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝑤𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
159, 14mpbid 231 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝐹𝑤) ∈ (𝐹𝑧))
16 regsep 22393 . . . . 5 (((KQ‘𝐽) ∈ Reg ∧ (𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (𝐹𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))
173, 8, 15, 16syl3anc 1369 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))
184adantr 480 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
196kqid 22787 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
2018, 19syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
21 simprl 767 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 ∈ (KQ‘𝐽))
22 cnima 22324 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑛 ∈ (KQ‘𝐽)) → (𝐹𝑛) ∈ 𝐽)
2320, 21, 22syl2anc 583 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑛) ∈ 𝐽)
2412adantr 480 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑤𝑋)
25 simprrl 777 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ∈ 𝑛)
266kqffn 22784 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
27 elpreima 6917 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑤 ∈ (𝐹𝑛) ↔ (𝑤𝑋 ∧ (𝐹𝑤) ∈ 𝑛)))
2818, 26, 273syl 18 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝑤 ∈ (𝐹𝑛) ↔ (𝑤𝑋 ∧ (𝐹𝑤) ∈ 𝑛)))
2924, 25, 28mpbir2and 709 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (𝐹𝑛))
306kqtopon 22786 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
31 topontop 21970 . . . . . . . . . 10 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
3218, 30, 313syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (KQ‘𝐽) ∈ Top)
33 elssuni 4868 . . . . . . . . . 10 (𝑛 ∈ (KQ‘𝐽) → 𝑛 (KQ‘𝐽))
3433ad2antrl 724 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 (KQ‘𝐽))
35 eqid 2738 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
3635clscld 22106 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑛 (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽)))
3732, 34, 36syl2anc 583 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽)))
38 cnclima 22327 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽))
3920, 37, 38syl2anc 583 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽))
4035sscls 22115 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑛 (KQ‘𝐽)) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛))
4132, 34, 40syl2anc 583 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛))
42 imass2 5999 . . . . . . . 8 (𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛) → (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
4341, 42syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
44 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
4544clsss2 22131 . . . . . . 7 (((𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
4639, 43, 45syl2anc 583 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
47 simprrr 778 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧))
48 imass2 5999 . . . . . . . 8 (((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (𝐹 “ (𝐹𝑧)))
4947, 48syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (𝐹 “ (𝐹𝑧)))
505adantr 480 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑧𝐽)
516kqsat 22790 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹 “ (𝐹𝑧)) = 𝑧)
5218, 50, 51syl2anc 583 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ (𝐹𝑧)) = 𝑧)
5349, 52sseqtrd 3957 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ 𝑧)
5446, 53sstrd 3927 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)
55 eleq2 2827 . . . . . . 7 (𝑚 = (𝐹𝑛) → (𝑤𝑚𝑤 ∈ (𝐹𝑛)))
56 fveq2 6756 . . . . . . . 8 (𝑚 = (𝐹𝑛) → ((cls‘𝐽)‘𝑚) = ((cls‘𝐽)‘(𝐹𝑛)))
5756sseq1d 3948 . . . . . . 7 (𝑚 = (𝐹𝑛) → (((cls‘𝐽)‘𝑚) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧))
5855, 57anbi12d 630 . . . . . 6 (𝑚 = (𝐹𝑛) → ((𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧) ↔ (𝑤 ∈ (𝐹𝑛) ∧ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)))
5958rspcev 3552 . . . . 5 (((𝐹𝑛) ∈ 𝐽 ∧ (𝑤 ∈ (𝐹𝑛) ∧ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6023, 29, 54, 59syl12anc 833 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6117, 60rexlimddv 3219 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6261ralrimivva 3114 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → ∀𝑧𝐽𝑤𝑧𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
63 isreg 22391 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑤𝑧𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧)))
642, 62, 63sylanbrc 582 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883   cuni 4836  cmpt 5153  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  cfv 6418  (class class class)co 7255  Topctop 21950  TopOnctopon 21967  Clsdccld 22075  clsccl 22077   Cn ccn 22283  Regcreg 22368  KQckq 22752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-qtop 17135  df-top 21951  df-topon 21968  df-cld 22078  df-cls 22080  df-cn 22286  df-reg 22375  df-kq 22753
This theorem is referenced by:  kqreg  22810
  Copyright terms: Public domain W3C validator