MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem2 Structured version   Visualization version   GIF version

Theorem kqreglem2 23636
Description: If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem2
Dummy variables 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22807 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Top)
3 simplr 768 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (KQ‘𝐽) ∈ Reg)
4 simpll 766 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝐽 ∈ (TopOn‘𝑋))
5 simprl 770 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑧𝐽)
6 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
76kqopn 23628 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
84, 5, 7syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝐹𝑧) ∈ (KQ‘𝐽))
9 simprr 772 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑤𝑧)
10 toponss 22821 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
114, 5, 10syl2anc 584 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑧𝑋)
1211, 9sseldd 3950 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑤𝑋)
136kqfvima 23624 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽𝑤𝑋) → (𝑤𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
144, 5, 12, 13syl3anc 1373 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝑤𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
159, 14mpbid 232 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝐹𝑤) ∈ (𝐹𝑧))
16 regsep 23228 . . . . 5 (((KQ‘𝐽) ∈ Reg ∧ (𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (𝐹𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))
173, 8, 15, 16syl3anc 1373 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))
184adantr 480 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
196kqid 23622 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
2018, 19syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
21 simprl 770 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 ∈ (KQ‘𝐽))
22 cnima 23159 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑛 ∈ (KQ‘𝐽)) → (𝐹𝑛) ∈ 𝐽)
2320, 21, 22syl2anc 584 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑛) ∈ 𝐽)
2412adantr 480 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑤𝑋)
25 simprrl 780 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ∈ 𝑛)
266kqffn 23619 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
27 elpreima 7033 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑤 ∈ (𝐹𝑛) ↔ (𝑤𝑋 ∧ (𝐹𝑤) ∈ 𝑛)))
2818, 26, 273syl 18 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝑤 ∈ (𝐹𝑛) ↔ (𝑤𝑋 ∧ (𝐹𝑤) ∈ 𝑛)))
2924, 25, 28mpbir2and 713 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (𝐹𝑛))
306kqtopon 23621 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
31 topontop 22807 . . . . . . . . . 10 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
3218, 30, 313syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (KQ‘𝐽) ∈ Top)
33 elssuni 4904 . . . . . . . . . 10 (𝑛 ∈ (KQ‘𝐽) → 𝑛 (KQ‘𝐽))
3433ad2antrl 728 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 (KQ‘𝐽))
35 eqid 2730 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
3635clscld 22941 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑛 (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽)))
3732, 34, 36syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽)))
38 cnclima 23162 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽))
3920, 37, 38syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽))
4035sscls 22950 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑛 (KQ‘𝐽)) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛))
4132, 34, 40syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛))
42 imass2 6076 . . . . . . . 8 (𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛) → (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
4341, 42syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
44 eqid 2730 . . . . . . . 8 𝐽 = 𝐽
4544clsss2 22966 . . . . . . 7 (((𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
4639, 43, 45syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
47 simprrr 781 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧))
48 imass2 6076 . . . . . . . 8 (((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (𝐹 “ (𝐹𝑧)))
4947, 48syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (𝐹 “ (𝐹𝑧)))
505adantr 480 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑧𝐽)
516kqsat 23625 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹 “ (𝐹𝑧)) = 𝑧)
5218, 50, 51syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ (𝐹𝑧)) = 𝑧)
5349, 52sseqtrd 3986 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ 𝑧)
5446, 53sstrd 3960 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)
55 eleq2 2818 . . . . . . 7 (𝑚 = (𝐹𝑛) → (𝑤𝑚𝑤 ∈ (𝐹𝑛)))
56 fveq2 6861 . . . . . . . 8 (𝑚 = (𝐹𝑛) → ((cls‘𝐽)‘𝑚) = ((cls‘𝐽)‘(𝐹𝑛)))
5756sseq1d 3981 . . . . . . 7 (𝑚 = (𝐹𝑛) → (((cls‘𝐽)‘𝑚) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧))
5855, 57anbi12d 632 . . . . . 6 (𝑚 = (𝐹𝑛) → ((𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧) ↔ (𝑤 ∈ (𝐹𝑛) ∧ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)))
5958rspcev 3591 . . . . 5 (((𝐹𝑛) ∈ 𝐽 ∧ (𝑤 ∈ (𝐹𝑛) ∧ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6023, 29, 54, 59syl12anc 836 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6117, 60rexlimddv 3141 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6261ralrimivva 3181 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → ∀𝑧𝐽𝑤𝑧𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
63 isreg 23226 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑤𝑧𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧)))
642, 62, 63sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917   cuni 4874  cmpt 5191  ccnv 5640  ran crn 5642  cima 5644   Fn wfn 6509  cfv 6514  (class class class)co 7390  Topctop 22787  TopOnctopon 22804  Clsdccld 22910  clsccl 22912   Cn ccn 23118  Regcreg 23203  KQckq 23587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-qtop 17477  df-top 22788  df-topon 22805  df-cld 22913  df-cls 22915  df-cn 23121  df-reg 23210  df-kq 23588
This theorem is referenced by:  kqreg  23645
  Copyright terms: Public domain W3C validator