MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem2 Structured version   Visualization version   GIF version

Theorem kqreglem2 22350
Description: If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem2
Dummy variables 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 21521 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 483 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Top)
3 simplr 767 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (KQ‘𝐽) ∈ Reg)
4 simpll 765 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝐽 ∈ (TopOn‘𝑋))
5 simprl 769 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑧𝐽)
6 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
76kqopn 22342 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
84, 5, 7syl2anc 586 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝐹𝑧) ∈ (KQ‘𝐽))
9 simprr 771 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑤𝑧)
10 toponss 21535 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
114, 5, 10syl2anc 586 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑧𝑋)
1211, 9sseldd 3968 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑤𝑋)
136kqfvima 22338 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽𝑤𝑋) → (𝑤𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
144, 5, 12, 13syl3anc 1367 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝑤𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
159, 14mpbid 234 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝐹𝑤) ∈ (𝐹𝑧))
16 regsep 21942 . . . . 5 (((KQ‘𝐽) ∈ Reg ∧ (𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (𝐹𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))
173, 8, 15, 16syl3anc 1367 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))
184adantr 483 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
196kqid 22336 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
2018, 19syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
21 simprl 769 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 ∈ (KQ‘𝐽))
22 cnima 21873 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑛 ∈ (KQ‘𝐽)) → (𝐹𝑛) ∈ 𝐽)
2320, 21, 22syl2anc 586 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑛) ∈ 𝐽)
2412adantr 483 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑤𝑋)
25 simprrl 779 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ∈ 𝑛)
266kqffn 22333 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
27 elpreima 6828 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑤 ∈ (𝐹𝑛) ↔ (𝑤𝑋 ∧ (𝐹𝑤) ∈ 𝑛)))
2818, 26, 273syl 18 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝑤 ∈ (𝐹𝑛) ↔ (𝑤𝑋 ∧ (𝐹𝑤) ∈ 𝑛)))
2924, 25, 28mpbir2and 711 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (𝐹𝑛))
306kqtopon 22335 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
31 topontop 21521 . . . . . . . . . 10 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
3218, 30, 313syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (KQ‘𝐽) ∈ Top)
33 elssuni 4868 . . . . . . . . . 10 (𝑛 ∈ (KQ‘𝐽) → 𝑛 (KQ‘𝐽))
3433ad2antrl 726 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 (KQ‘𝐽))
35 eqid 2821 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
3635clscld 21655 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑛 (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽)))
3732, 34, 36syl2anc 586 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽)))
38 cnclima 21876 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽))
3920, 37, 38syl2anc 586 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽))
4035sscls 21664 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑛 (KQ‘𝐽)) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛))
4132, 34, 40syl2anc 586 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛))
42 imass2 5965 . . . . . . . 8 (𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛) → (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
4341, 42syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
44 eqid 2821 . . . . . . . 8 𝐽 = 𝐽
4544clsss2 21680 . . . . . . 7 (((𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
4639, 43, 45syl2anc 586 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
47 simprrr 780 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧))
48 imass2 5965 . . . . . . . 8 (((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (𝐹 “ (𝐹𝑧)))
4947, 48syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (𝐹 “ (𝐹𝑧)))
505adantr 483 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑧𝐽)
516kqsat 22339 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹 “ (𝐹𝑧)) = 𝑧)
5218, 50, 51syl2anc 586 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ (𝐹𝑧)) = 𝑧)
5349, 52sseqtrd 4007 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ 𝑧)
5446, 53sstrd 3977 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)
55 eleq2 2901 . . . . . . 7 (𝑚 = (𝐹𝑛) → (𝑤𝑚𝑤 ∈ (𝐹𝑛)))
56 fveq2 6670 . . . . . . . 8 (𝑚 = (𝐹𝑛) → ((cls‘𝐽)‘𝑚) = ((cls‘𝐽)‘(𝐹𝑛)))
5756sseq1d 3998 . . . . . . 7 (𝑚 = (𝐹𝑛) → (((cls‘𝐽)‘𝑚) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧))
5855, 57anbi12d 632 . . . . . 6 (𝑚 = (𝐹𝑛) → ((𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧) ↔ (𝑤 ∈ (𝐹𝑛) ∧ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)))
5958rspcev 3623 . . . . 5 (((𝐹𝑛) ∈ 𝐽 ∧ (𝑤 ∈ (𝐹𝑛) ∧ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6023, 29, 54, 59syl12anc 834 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6117, 60rexlimddv 3291 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6261ralrimivva 3191 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → ∀𝑧𝐽𝑤𝑧𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
63 isreg 21940 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑤𝑧𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧)))
642, 62, 63sylanbrc 585 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  wss 3936   cuni 4838  cmpt 5146  ccnv 5554  ran crn 5556  cima 5558   Fn wfn 6350  cfv 6355  (class class class)co 7156  Topctop 21501  TopOnctopon 21518  Clsdccld 21624  clsccl 21626   Cn ccn 21832  Regcreg 21917  KQckq 22301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-qtop 16780  df-top 21502  df-topon 21519  df-cld 21627  df-cls 21629  df-cn 21835  df-reg 21924  df-kq 22302
This theorem is referenced by:  kqreg  22359
  Copyright terms: Public domain W3C validator