Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonhoire Structured version   Visualization version   GIF version

Theorem vonhoire 43311
Description: The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonhoire.n 𝑘𝜑
vonhoire.x (𝜑𝑋 ∈ Fin)
vonhoire.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonhoire.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
vonhoire (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem vonhoire
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
21fveq1d 6647 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
32adantl 485 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
4 ixpeq1 8455 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
54adantl 485 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
6 vonhoire.n . . . . . . . 8 𝑘𝜑
7 0fin 8730 . . . . . . . . 9 ∅ ∈ Fin
87a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ Fin)
9 eqid 2798 . . . . . . . 8 dom (voln‘∅) = dom (voln‘∅)
10 noel 4247 . . . . . . . . . 10 ¬ 𝑘 ∈ ∅
1110pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐴 ∈ ℝ)
1211adantl 485 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐴 ∈ ℝ)
1310pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐵 ∈ ℝ)
1413adantl 485 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐵 ∈ ℝ)
156, 8, 9, 12, 14hoimbl2 43304 . . . . . . 7 (𝜑X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
1615adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
175, 16eqeltrd 2890 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) ∈ dom (voln‘∅))
1817von0val 43310 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
193, 18eqtrd 2833 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
20 0red 10633 . . 3 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
2119, 20eqeltrd 2890 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
22 neqne 2995 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 simpr 488 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗𝑋)
25 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝑗𝑋
266, 25nfan 1900 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋)
27 nfcv 2955 . . . . . . . . . . . . . . 15 𝑘𝑗
2827nfcsb1 3851 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐴
2928nfel1 2971 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
3026, 29nfim 1897 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
31 eleq1w 2872 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
3231anbi2d 631 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
33 csbeq1a 3842 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
3433eleq1d 2874 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
3532, 34imbi12d 348 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
36 vonhoire.a . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
3730, 35, 36chvarfv 2240 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
38 eqid 2798 . . . . . . . . . . . 12 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
3927, 28, 33, 38fvmptf 6766 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4024, 37, 39syl2anc 587 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4127nfcsb1 3851 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐵
42 nfcv 2955 . . . . . . . . . . . . . 14 𝑘
4341, 42nfel 2969 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
4426, 43nfim 1897 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
45 csbeq1a 3842 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
4645eleq1d 2874 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
4732, 46imbi12d 348 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
48 vonhoire.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
4944, 47, 48chvarfv 2240 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
50 eqid 2798 . . . . . . . . . . . 12 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
5127, 41, 45, 50fvmptf 6766 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5224, 49, 51syl2anc 587 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5340, 52oveq12d 7153 . . . . . . . . 9 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5453ixpeq2dva 8459 . . . . . . . 8 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
55 nfcv 2955 . . . . . . . . . . 11 𝑗(𝐴[,)𝐵)
56 nfcv 2955 . . . . . . . . . . . 12 𝑘[,)
5728, 56, 41nfov 7165 . . . . . . . . . . 11 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
5833, 45oveq12d 7153 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5955, 57, 58cbvixp 8461 . . . . . . . . . 10 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
6059eqcomi 2807 . . . . . . . . 9 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
6160a1i 11 . . . . . . . 8 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
6254, 61eqtr2d 2834 . . . . . . 7 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
6362fveq2d 6649 . . . . . 6 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
6463adantr 484 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
65 vonhoire.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
6665adantr 484 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
67 simpr 488 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
686, 36, 38fmptdf 6858 . . . . . . 7 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
6968adantr 484 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐴):𝑋⟶ℝ)
706, 48, 50fmptdf 6858 . . . . . . 7 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
7170adantr 484 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐵):𝑋⟶ℝ)
72 eqid 2798 . . . . . 6 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))
7366, 67, 69, 71, 72vonn0hoi 43309 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7464, 73eqtrd 2833 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7540, 37eqeltrd 2890 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) ∈ ℝ)
7652, 49eqeltrd 2890 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ)
77 volicore 43220 . . . . . . 7 ((((𝑘𝑋𝐴)‘𝑗) ∈ ℝ ∧ ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7875, 76, 77syl2anc 587 . . . . . 6 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7965, 78fprodrecl 15299 . . . . 5 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8079adantr 484 . . . 4 ((𝜑𝑋 ≠ ∅) → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8174, 80eqeltrd 2890 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8223, 81syldan 594 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8321, 82pm2.61dan 812 1 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wne 2987  csb 3828  c0 4243  cmpt 5110  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  Xcixp 8444  Fincfn 8492  cr 10525  0cc0 10526  [,)cico 12728  cprod 15251  volcvol 24067  volncvoln 43177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-prod 15252  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069  df-salg 42951  df-sumge0 43002  df-mea 43089  df-ome 43129  df-caragen 43131  df-ovoln 43176  df-voln 43178
This theorem is referenced by:  vonioolem2  43320  vonicclem2  43323
  Copyright terms: Public domain W3C validator