Step | Hyp | Ref
| Expression |
1 | | fveq2 6766 |
. . . . . 6
⊢ (𝑋 = ∅ →
(voln‘𝑋) =
(voln‘∅)) |
2 | 1 | fveq1d 6768 |
. . . . 5
⊢ (𝑋 = ∅ →
((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵))) |
3 | 2 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵))) |
4 | | ixpeq1 8683 |
. . . . . . 7
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵)) |
5 | 4 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑘 ∈
𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵)) |
6 | | vonhoire.n |
. . . . . . . 8
⊢
Ⅎ𝑘𝜑 |
7 | | 0fin 8941 |
. . . . . . . . 9
⊢ ∅
∈ Fin |
8 | 7 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈
Fin) |
9 | | eqid 2738 |
. . . . . . . 8
⊢ dom
(voln‘∅) = dom (voln‘∅) |
10 | | noel 4264 |
. . . . . . . . . 10
⊢ ¬
𝑘 ∈
∅ |
11 | 10 | pm2.21i 119 |
. . . . . . . . 9
⊢ (𝑘 ∈ ∅ → 𝐴 ∈
ℝ) |
12 | 11 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℝ) |
13 | 10 | pm2.21i 119 |
. . . . . . . . 9
⊢ (𝑘 ∈ ∅ → 𝐵 ∈
ℝ) |
14 | 13 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ∅) → 𝐵 ∈ ℝ) |
15 | 6, 8, 9, 12, 14 | hoimbl2 44184 |
. . . . . . 7
⊢ (𝜑 → X𝑘 ∈
∅ (𝐴[,)𝐵) ∈ dom
(voln‘∅)) |
16 | 15 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑘 ∈
∅ (𝐴[,)𝐵) ∈ dom
(voln‘∅)) |
17 | 5, 16 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑘 ∈
𝑋 (𝐴[,)𝐵) ∈ dom
(voln‘∅)) |
18 | 17 | von0val 44190 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) →
((voln‘∅)‘X𝑘 ∈ 𝑋 (𝐴[,)𝐵)) = 0) |
19 | 3, 18 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) = 0) |
20 | | 0red 10988 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ∈
ℝ) |
21 | 19, 20 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) ∈ ℝ) |
22 | | neqne 2951 |
. . . 4
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
23 | 22 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
24 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) |
25 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑗 ∈ 𝑋 |
26 | 6, 25 | nfan 1902 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) |
27 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑗 |
28 | 27 | nfcsb1 3855 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
29 | 28 | nfel1 2923 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ |
30 | 26, 29 | nfim 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
31 | | eleq1w 2821 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) |
32 | 31 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) |
33 | | csbeq1a 3845 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) |
34 | 33 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) |
35 | 32, 34 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) |
36 | | vonhoire.a |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
37 | 30, 35, 36 | chvarfv 2233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
38 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) |
39 | 27, 28, 33, 38 | fvmptf 6888 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
40 | 24, 37, 39 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
41 | 27 | nfcsb1 3855 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
42 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘ℝ |
43 | 41, 42 | nfel 2921 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
44 | 26, 43 | nfim 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
45 | | csbeq1a 3845 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
46 | 45 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
47 | 32, 46 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
48 | | vonhoire.b |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
49 | 44, 47, 48 | chvarfv 2233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
50 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) |
51 | 27, 41, 45, 50 | fvmptf 6888 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
52 | 24, 49, 51 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
53 | 40, 52 | oveq12d 7285 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
54 | 53 | ixpeq2dva 8687 |
. . . . . . . 8
⊢ (𝜑 → X𝑗 ∈
𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
55 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗(𝐴[,)𝐵) |
56 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘[,) |
57 | 28, 56, 41 | nfov 7297 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) |
58 | 33, 45 | oveq12d 7285 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝐴[,)𝐵) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
59 | 55, 57, 58 | cbvixp 8689 |
. . . . . . . . . 10
⊢ X𝑘 ∈
𝑋 (𝐴[,)𝐵) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) |
60 | 59 | eqcomi 2747 |
. . . . . . . . 9
⊢ X𝑗 ∈
𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,)𝐵) |
61 | 60 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → X𝑗 ∈
𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,)𝐵)) |
62 | 54, 61 | eqtr2d 2779 |
. . . . . . 7
⊢ (𝜑 → X𝑘 ∈
𝑋 (𝐴[,)𝐵) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) |
63 | 62 | fveq2d 6770 |
. . . . . 6
⊢ (𝜑 → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
64 | 63 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
65 | | vonhoire.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Fin) |
66 | 65 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ Fin) |
67 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) |
68 | 6, 36, 38 | fmptdf 6983 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
69 | 68 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
70 | 6, 48, 50 | fmptdf 6983 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
71 | 70 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
72 | | eqid 2738 |
. . . . . 6
⊢ X𝑗 ∈
𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) |
73 | 66, 67, 69, 71, 72 | vonn0hoi 44189 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑗 ∈
𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
74 | 64, 73 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) = ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
75 | 40, 37 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) ∈ ℝ) |
76 | 52, 49 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) ∈ ℝ) |
77 | | volicore 44100 |
. . . . . . 7
⊢ ((((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) ∈ ℝ ∧ ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) ∈ ℝ) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) ∈ ℝ) |
78 | 75, 76, 77 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) ∈ ℝ) |
79 | 65, 78 | fprodrecl 15673 |
. . . . 5
⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) ∈ ℝ) |
80 | 79 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) ∈ ℝ) |
81 | 74, 80 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) ∈ ℝ) |
82 | 23, 81 | syldan 591 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) ∈ ℝ) |
83 | 21, 82 | pm2.61dan 810 |
1
⊢ (𝜑 → ((voln‘𝑋)‘X𝑘 ∈
𝑋 (𝐴[,)𝐵)) ∈ ℝ) |