Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonhoire Structured version   Visualization version   GIF version

Theorem vonhoire 46663
Description: The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonhoire.n 𝑘𝜑
vonhoire.x (𝜑𝑋 ∈ Fin)
vonhoire.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonhoire.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
vonhoire (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem vonhoire
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
21fveq1d 6824 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
32adantl 481 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
4 ixpeq1 8835 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
54adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
6 vonhoire.n . . . . . . . 8 𝑘𝜑
7 0fi 8967 . . . . . . . . 9 ∅ ∈ Fin
87a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ Fin)
9 eqid 2729 . . . . . . . 8 dom (voln‘∅) = dom (voln‘∅)
10 noel 4289 . . . . . . . . . 10 ¬ 𝑘 ∈ ∅
1110pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐴 ∈ ℝ)
1211adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐴 ∈ ℝ)
1310pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐵 ∈ ℝ)
1413adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐵 ∈ ℝ)
156, 8, 9, 12, 14hoimbl2 46656 . . . . . . 7 (𝜑X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
1615adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
175, 16eqeltrd 2828 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) ∈ dom (voln‘∅))
1817von0val 46662 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
193, 18eqtrd 2764 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
20 0red 11118 . . 3 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
2119, 20eqeltrd 2828 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
22 neqne 2933 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 simpr 484 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗𝑋)
25 nfv 1914 . . . . . . . . . . . . . 14 𝑘 𝑗𝑋
266, 25nfan 1899 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋)
27 nfcv 2891 . . . . . . . . . . . . . . 15 𝑘𝑗
2827nfcsb1 3874 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐴
2928nfel1 2908 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
3026, 29nfim 1896 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
31 eleq1w 2811 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
3231anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
33 csbeq1a 3865 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
3433eleq1d 2813 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
3532, 34imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
36 vonhoire.a . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
3730, 35, 36chvarfv 2241 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
38 eqid 2729 . . . . . . . . . . . 12 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
3927, 28, 33, 38fvmptf 6951 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4024, 37, 39syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4127nfcsb1 3874 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐵
42 nfcv 2891 . . . . . . . . . . . . . 14 𝑘
4341, 42nfel 2906 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
4426, 43nfim 1896 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
45 csbeq1a 3865 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
4645eleq1d 2813 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
4732, 46imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
48 vonhoire.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
4944, 47, 48chvarfv 2241 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
50 eqid 2729 . . . . . . . . . . . 12 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
5127, 41, 45, 50fvmptf 6951 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5224, 49, 51syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5340, 52oveq12d 7367 . . . . . . . . 9 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5453ixpeq2dva 8839 . . . . . . . 8 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
55 nfcv 2891 . . . . . . . . . . 11 𝑗(𝐴[,)𝐵)
56 nfcv 2891 . . . . . . . . . . . 12 𝑘[,)
5728, 56, 41nfov 7379 . . . . . . . . . . 11 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
5833, 45oveq12d 7367 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5955, 57, 58cbvixp 8841 . . . . . . . . . 10 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
6059eqcomi 2738 . . . . . . . . 9 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
6160a1i 11 . . . . . . . 8 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
6254, 61eqtr2d 2765 . . . . . . 7 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
6362fveq2d 6826 . . . . . 6 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
6463adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
65 vonhoire.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
6665adantr 480 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
67 simpr 484 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
686, 36, 38fmptdf 7051 . . . . . . 7 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
6968adantr 480 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐴):𝑋⟶ℝ)
706, 48, 50fmptdf 7051 . . . . . . 7 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
7170adantr 480 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐵):𝑋⟶ℝ)
72 eqid 2729 . . . . . 6 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))
7366, 67, 69, 71, 72vonn0hoi 46661 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7464, 73eqtrd 2764 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7540, 37eqeltrd 2828 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) ∈ ℝ)
7652, 49eqeltrd 2828 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ)
77 volicore 46572 . . . . . . 7 ((((𝑘𝑋𝐴)‘𝑗) ∈ ℝ ∧ ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7875, 76, 77syl2anc 584 . . . . . 6 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7965, 78fprodrecl 15860 . . . . 5 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8079adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8174, 80eqeltrd 2828 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8223, 81syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8321, 82pm2.61dan 812 1 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  csb 3851  c0 4284  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  Xcixp 8824  Fincfn 8872  cr 11008  0cc0 11009  [,)cico 13250  cprod 15810  volcvol 25362  volncvoln 46529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364  df-salg 46300  df-sumge0 46354  df-mea 46441  df-ome 46481  df-caragen 46483  df-ovoln 46528  df-voln 46530
This theorem is referenced by:  vonioolem2  46672  vonicclem2  46675
  Copyright terms: Public domain W3C validator