Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonhoire Structured version   Visualization version   GIF version

Theorem vonhoire 44191
Description: The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonhoire.n 𝑘𝜑
vonhoire.x (𝜑𝑋 ∈ Fin)
vonhoire.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonhoire.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
vonhoire (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem vonhoire
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6766 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
21fveq1d 6768 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
32adantl 482 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
4 ixpeq1 8683 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
54adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
6 vonhoire.n . . . . . . . 8 𝑘𝜑
7 0fin 8941 . . . . . . . . 9 ∅ ∈ Fin
87a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ Fin)
9 eqid 2738 . . . . . . . 8 dom (voln‘∅) = dom (voln‘∅)
10 noel 4264 . . . . . . . . . 10 ¬ 𝑘 ∈ ∅
1110pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐴 ∈ ℝ)
1211adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐴 ∈ ℝ)
1310pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐵 ∈ ℝ)
1413adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐵 ∈ ℝ)
156, 8, 9, 12, 14hoimbl2 44184 . . . . . . 7 (𝜑X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
1615adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
175, 16eqeltrd 2839 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) ∈ dom (voln‘∅))
1817von0val 44190 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
193, 18eqtrd 2778 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
20 0red 10988 . . 3 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
2119, 20eqeltrd 2839 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
22 neqne 2951 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 simpr 485 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗𝑋)
25 nfv 1917 . . . . . . . . . . . . . 14 𝑘 𝑗𝑋
266, 25nfan 1902 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋)
27 nfcv 2907 . . . . . . . . . . . . . . 15 𝑘𝑗
2827nfcsb1 3855 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐴
2928nfel1 2923 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
3026, 29nfim 1899 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
31 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
3231anbi2d 629 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
33 csbeq1a 3845 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
3433eleq1d 2823 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
3532, 34imbi12d 345 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
36 vonhoire.a . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
3730, 35, 36chvarfv 2233 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
38 eqid 2738 . . . . . . . . . . . 12 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
3927, 28, 33, 38fvmptf 6888 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4024, 37, 39syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4127nfcsb1 3855 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐵
42 nfcv 2907 . . . . . . . . . . . . . 14 𝑘
4341, 42nfel 2921 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
4426, 43nfim 1899 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
45 csbeq1a 3845 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
4645eleq1d 2823 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
4732, 46imbi12d 345 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
48 vonhoire.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
4944, 47, 48chvarfv 2233 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
50 eqid 2738 . . . . . . . . . . . 12 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
5127, 41, 45, 50fvmptf 6888 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5224, 49, 51syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5340, 52oveq12d 7285 . . . . . . . . 9 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5453ixpeq2dva 8687 . . . . . . . 8 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
55 nfcv 2907 . . . . . . . . . . 11 𝑗(𝐴[,)𝐵)
56 nfcv 2907 . . . . . . . . . . . 12 𝑘[,)
5728, 56, 41nfov 7297 . . . . . . . . . . 11 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
5833, 45oveq12d 7285 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5955, 57, 58cbvixp 8689 . . . . . . . . . 10 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
6059eqcomi 2747 . . . . . . . . 9 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
6160a1i 11 . . . . . . . 8 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
6254, 61eqtr2d 2779 . . . . . . 7 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
6362fveq2d 6770 . . . . . 6 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
6463adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
65 vonhoire.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
6665adantr 481 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
67 simpr 485 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
686, 36, 38fmptdf 6983 . . . . . . 7 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
6968adantr 481 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐴):𝑋⟶ℝ)
706, 48, 50fmptdf 6983 . . . . . . 7 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
7170adantr 481 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐵):𝑋⟶ℝ)
72 eqid 2738 . . . . . 6 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))
7366, 67, 69, 71, 72vonn0hoi 44189 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7464, 73eqtrd 2778 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7540, 37eqeltrd 2839 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) ∈ ℝ)
7652, 49eqeltrd 2839 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ)
77 volicore 44100 . . . . . . 7 ((((𝑘𝑋𝐴)‘𝑗) ∈ ℝ ∧ ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7875, 76, 77syl2anc 584 . . . . . 6 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7965, 78fprodrecl 15673 . . . . 5 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8079adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8174, 80eqeltrd 2839 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8223, 81syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8321, 82pm2.61dan 810 1 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wne 2943  csb 3831  c0 4256  cmpt 5156  dom cdm 5584  wf 6422  cfv 6426  (class class class)co 7267  Xcixp 8672  Fincfn 8720  cr 10880  0cc0 10881  [,)cico 13091  cprod 15625  volcvol 24637  volncvoln 44057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cc 10201  ax-ac2 10229  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5039  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-tpos 8029  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-oadd 8288  df-omul 8289  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fi 9157  df-sup 9188  df-inf 9189  df-oi 9256  df-dju 9669  df-card 9707  df-acn 9710  df-ac 9882  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-ioo 13093  df-ico 13095  df-icc 13096  df-fz 13250  df-fzo 13393  df-fl 13522  df-seq 13732  df-exp 13793  df-hash 14055  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-clim 15207  df-rlim 15208  df-sum 15408  df-prod 15626  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-rest 17143  df-0g 17162  df-topgen 17164  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-grp 18590  df-minusg 18591  df-subg 18762  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-cring 19796  df-oppr 19872  df-dvdsr 19893  df-unit 19894  df-invr 19924  df-dvr 19935  df-drng 20003  df-psmet 20599  df-xmet 20600  df-met 20601  df-bl 20602  df-mopn 20603  df-cnfld 20608  df-top 22053  df-topon 22070  df-bases 22106  df-cmp 22548  df-ovol 24638  df-vol 24639  df-salg 43831  df-sumge0 43882  df-mea 43969  df-ome 44009  df-caragen 44011  df-ovoln 44056  df-voln 44058
This theorem is referenced by:  vonioolem2  44200  vonicclem2  44203
  Copyright terms: Public domain W3C validator