Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonhoire Structured version   Visualization version   GIF version

Theorem vonhoire 44164
Description: The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonhoire.n 𝑘𝜑
vonhoire.x (𝜑𝑋 ∈ Fin)
vonhoire.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonhoire.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
vonhoire (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem vonhoire
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6768 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
21fveq1d 6770 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
32adantl 481 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
4 ixpeq1 8670 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
54adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
6 vonhoire.n . . . . . . . 8 𝑘𝜑
7 0fin 8919 . . . . . . . . 9 ∅ ∈ Fin
87a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ Fin)
9 eqid 2739 . . . . . . . 8 dom (voln‘∅) = dom (voln‘∅)
10 noel 4269 . . . . . . . . . 10 ¬ 𝑘 ∈ ∅
1110pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐴 ∈ ℝ)
1211adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐴 ∈ ℝ)
1310pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐵 ∈ ℝ)
1413adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐵 ∈ ℝ)
156, 8, 9, 12, 14hoimbl2 44157 . . . . . . 7 (𝜑X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
1615adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
175, 16eqeltrd 2840 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) ∈ dom (voln‘∅))
1817von0val 44163 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
193, 18eqtrd 2779 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
20 0red 10962 . . 3 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
2119, 20eqeltrd 2840 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
22 neqne 2952 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 simpr 484 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗𝑋)
25 nfv 1920 . . . . . . . . . . . . . 14 𝑘 𝑗𝑋
266, 25nfan 1905 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋)
27 nfcv 2908 . . . . . . . . . . . . . . 15 𝑘𝑗
2827nfcsb1 3860 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐴
2928nfel1 2924 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
3026, 29nfim 1902 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
31 eleq1w 2822 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
3231anbi2d 628 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
33 csbeq1a 3850 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
3433eleq1d 2824 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
3532, 34imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
36 vonhoire.a . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
3730, 35, 36chvarfv 2236 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
38 eqid 2739 . . . . . . . . . . . 12 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
3927, 28, 33, 38fvmptf 6890 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4024, 37, 39syl2anc 583 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4127nfcsb1 3860 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐵
42 nfcv 2908 . . . . . . . . . . . . . 14 𝑘
4341, 42nfel 2922 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
4426, 43nfim 1902 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
45 csbeq1a 3850 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
4645eleq1d 2824 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
4732, 46imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
48 vonhoire.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
4944, 47, 48chvarfv 2236 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
50 eqid 2739 . . . . . . . . . . . 12 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
5127, 41, 45, 50fvmptf 6890 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5224, 49, 51syl2anc 583 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5340, 52oveq12d 7286 . . . . . . . . 9 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5453ixpeq2dva 8674 . . . . . . . 8 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
55 nfcv 2908 . . . . . . . . . . 11 𝑗(𝐴[,)𝐵)
56 nfcv 2908 . . . . . . . . . . . 12 𝑘[,)
5728, 56, 41nfov 7298 . . . . . . . . . . 11 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
5833, 45oveq12d 7286 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5955, 57, 58cbvixp 8676 . . . . . . . . . 10 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
6059eqcomi 2748 . . . . . . . . 9 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
6160a1i 11 . . . . . . . 8 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
6254, 61eqtr2d 2780 . . . . . . 7 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
6362fveq2d 6772 . . . . . 6 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
6463adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
65 vonhoire.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
6665adantr 480 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
67 simpr 484 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
686, 36, 38fmptdf 6985 . . . . . . 7 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
6968adantr 480 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐴):𝑋⟶ℝ)
706, 48, 50fmptdf 6985 . . . . . . 7 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
7170adantr 480 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐵):𝑋⟶ℝ)
72 eqid 2739 . . . . . 6 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))
7366, 67, 69, 71, 72vonn0hoi 44162 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7464, 73eqtrd 2779 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7540, 37eqeltrd 2840 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) ∈ ℝ)
7652, 49eqeltrd 2840 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ)
77 volicore 44073 . . . . . . 7 ((((𝑘𝑋𝐴)‘𝑗) ∈ ℝ ∧ ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7875, 76, 77syl2anc 583 . . . . . 6 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7965, 78fprodrecl 15644 . . . . 5 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8079adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8174, 80eqeltrd 2840 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8223, 81syldan 590 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8321, 82pm2.61dan 809 1 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wnf 1789  wcel 2109  wne 2944  csb 3836  c0 4261  cmpt 5161  dom cdm 5588  wf 6426  cfv 6430  (class class class)co 7268  Xcixp 8659  Fincfn 8707  cr 10854  0cc0 10855  [,)cico 13063  cprod 15596  volcvol 24608  volncvoln 44030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cc 10175  ax-ac2 10203  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-disj 5044  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-omul 8286  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-dju 9643  df-card 9681  df-acn 9684  df-ac 9856  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-rlim 15179  df-sum 15379  df-prod 15597  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-rest 17114  df-0g 17133  df-topgen 17135  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-subg 18733  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-cring 19767  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-dvr 19906  df-drng 19974  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-cnfld 20579  df-top 22024  df-topon 22041  df-bases 22077  df-cmp 22519  df-ovol 24609  df-vol 24610  df-salg 43804  df-sumge0 43855  df-mea 43942  df-ome 43982  df-caragen 43984  df-ovoln 44029  df-voln 44031
This theorem is referenced by:  vonioolem2  44173  vonicclem2  44176
  Copyright terms: Public domain W3C validator