Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonhoire Structured version   Visualization version   GIF version

Theorem vonhoire 42518
 Description: The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonhoire.n 𝑘𝜑
vonhoire.x (𝜑𝑋 ∈ Fin)
vonhoire.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonhoire.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
vonhoire (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem vonhoire
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6545 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
21fveq1d 6547 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
32adantl 482 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)))
4 ixpeq1 8328 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
54adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) = X𝑘 ∈ ∅ (𝐴[,)𝐵))
6 vonhoire.n . . . . . . . 8 𝑘𝜑
7 0fin 8599 . . . . . . . . 9 ∅ ∈ Fin
87a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ Fin)
9 eqid 2797 . . . . . . . 8 dom (voln‘∅) = dom (voln‘∅)
10 noel 4222 . . . . . . . . . 10 ¬ 𝑘 ∈ ∅
1110pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐴 ∈ ℝ)
1211adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐴 ∈ ℝ)
1310pm2.21i 119 . . . . . . . . 9 (𝑘 ∈ ∅ → 𝐵 ∈ ℝ)
1413adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ∅) → 𝐵 ∈ ℝ)
156, 8, 9, 12, 14hoimbl2 42511 . . . . . . 7 (𝜑X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
1615adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ (𝐴[,)𝐵) ∈ dom (voln‘∅))
175, 16eqeltrd 2885 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘𝑋 (𝐴[,)𝐵) ∈ dom (voln‘∅))
1817von0val 42517 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
193, 18eqtrd 2833 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = 0)
20 0red 10497 . . 3 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
2119, 20eqeltrd 2885 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
22 neqne 2994 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2322adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
24 simpr 485 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗𝑋)
25 nfv 1896 . . . . . . . . . . . . . 14 𝑘 𝑗𝑋
266, 25nfan 1885 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋)
27 nfcv 2951 . . . . . . . . . . . . . . 15 𝑘𝑗
2827nfcsb1 3838 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐴
2928nfel1 2965 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
3026, 29nfim 1882 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
31 eleq1w 2867 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
3231anbi2d 628 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
33 csbeq1a 3830 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
3433eleq1d 2869 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
3532, 34imbi12d 346 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
36 vonhoire.a . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
3730, 35, 36chvar 2371 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
38 eqid 2797 . . . . . . . . . . . 12 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
3927, 28, 33, 38fvmptf 6662 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4024, 37, 39syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
4127nfcsb1 3838 . . . . . . . . . . . . . 14 𝑘𝑗 / 𝑘𝐵
42 nfcv 2951 . . . . . . . . . . . . . 14 𝑘
4341, 42nfel 2963 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
4426, 43nfim 1882 . . . . . . . . . . . 12 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
45 csbeq1a 3830 . . . . . . . . . . . . . 14 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
4645eleq1d 2869 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
4732, 46imbi12d 346 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
48 vonhoire.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
4944, 47, 48chvar 2371 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
50 eqid 2797 . . . . . . . . . . . 12 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
5127, 41, 45, 50fvmptf 6662 . . . . . . . . . . 11 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5224, 49, 51syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
5340, 52oveq12d 7041 . . . . . . . . 9 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5453ixpeq2dva 8332 . . . . . . . 8 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
55 nfcv 2951 . . . . . . . . . . 11 𝑗(𝐴[,)𝐵)
56 nfcv 2951 . . . . . . . . . . . 12 𝑘[,)
5728, 56, 41nfov 7053 . . . . . . . . . . 11 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
5833, 45oveq12d 7041 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5955, 57, 58cbvixp 8334 . . . . . . . . . 10 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
6059eqcomi 2806 . . . . . . . . 9 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
6160a1i 11 . . . . . . . 8 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
6254, 61eqtr2d 2834 . . . . . . 7 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
6362fveq2d 6549 . . . . . 6 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
6463adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
65 vonhoire.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
6665adantr 481 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
67 simpr 485 . . . . . 6 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
686, 36, 38fmptdf 6751 . . . . . . 7 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
6968adantr 481 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐴):𝑋⟶ℝ)
706, 48, 50fmptdf 6751 . . . . . . 7 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
7170adantr 481 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋𝐵):𝑋⟶ℝ)
72 eqid 2797 . . . . . 6 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))
7366, 67, 69, 71, 72vonn0hoi 42516 . . . . 5 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7464, 73eqtrd 2833 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
7540, 37eqeltrd 2885 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) ∈ ℝ)
7652, 49eqeltrd 2885 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ)
77 volicore 42427 . . . . . . 7 ((((𝑘𝑋𝐴)‘𝑗) ∈ ℝ ∧ ((𝑘𝑋𝐵)‘𝑗) ∈ ℝ) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7875, 76, 77syl2anc 584 . . . . . 6 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
7965, 78fprodrecl 15144 . . . . 5 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8079adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) ∈ ℝ)
8174, 80eqeltrd 2885 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8223, 81syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
8321, 82pm2.61dan 809 1 (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   = wceq 1525  Ⅎwnf 1769   ∈ wcel 2083   ≠ wne 2986  ⦋csb 3817  ∅c0 4217   ↦ cmpt 5047  dom cdm 5450  ⟶wf 6228  ‘cfv 6232  (class class class)co 7023  Xcixp 8317  Fincfn 8364  ℝcr 10389  0cc0 10390  [,)cico 12594  ∏cprod 15096  volcvol 23751  volncvoln 42384 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cc 9710  ax-ac2 9738  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-disj 4937  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-tpos 7750  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-omul 7965  df-er 8146  df-map 8265  df-pm 8266  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-dju 9183  df-card 9221  df-acn 9224  df-ac 9395  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-rlim 14684  df-sum 14881  df-prod 15097  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-rest 16529  df-0g 16548  df-topgen 16550  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-grp 17868  df-minusg 17869  df-subg 18034  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-cring 18994  df-oppr 19067  df-dvdsr 19085  df-unit 19086  df-invr 19116  df-dvr 19127  df-drng 19198  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-cnfld 20232  df-top 21190  df-topon 21207  df-bases 21242  df-cmp 21683  df-ovol 23752  df-vol 23753  df-salg 42158  df-sumge0 42209  df-mea 42296  df-ome 42336  df-caragen 42338  df-ovoln 42383  df-voln 42385 This theorem is referenced by:  vonioolem2  42527  vonicclem2  42530
 Copyright terms: Public domain W3C validator