Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnxr Structured version   Visualization version   GIF version

Theorem ioorrnopnxr 46344
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 46342 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnxr.x (𝜑𝑋 ∈ Fin)
ioorrnopnxr.a (𝜑𝐴:𝑋⟶ℝ*)
ioorrnopnxr.b (𝜑𝐵:𝑋⟶ℝ*)
Assertion
Ref Expression
ioorrnopnxr (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem ioorrnopnxr
Dummy variables 𝑓 𝑗 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 5322 . . . . . 6 {∅} ∈ V
21prid2 4716 . . . . 5 {∅} ∈ {∅, {∅}}
32a1i 11 . . . 4 (𝑋 = ∅ → {∅} ∈ {∅, {∅}})
4 ixpeq1 8832 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)))
5 ixp0x 8850 . . . . . . 7 X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅}
65a1i 11 . . . . . 6 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
74, 6eqtrd 2766 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
8 2fveq3 6827 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅)))
9 rrxtopn0b 46333 . . . . . . 7 (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
109a1i 11 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}})
118, 10eqtrd 2766 . . . . 5 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}})
127, 11eleq12d 2825 . . . 4 (𝑋 = ∅ → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}}))
133, 12mpbird 257 . . 3 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
1413adantl 481 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
15 neqne 2936 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1615adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
17 fveq2 6822 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
18 fveq2 6822 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
1917, 18oveq12d 7364 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐴𝑖)(,)(𝐵𝑖)) = ((𝐴𝑗)(,)(𝐵𝑗)))
2019cbvixpv 8839 . . . . . . . . 9 X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))
2120eleq2i 2823 . . . . . . . 8 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2221biimpi 216 . . . . . . 7 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2322adantl 481 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
24 ioorrnopnxr.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
2524ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ∈ Fin)
26 ioorrnopnxr.a . . . . . . . 8 (𝜑𝐴:𝑋⟶ℝ*)
2726ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐴:𝑋⟶ℝ*)
28 ioorrnopnxr.b . . . . . . . 8 (𝜑𝐵:𝑋⟶ℝ*)
2928ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐵:𝑋⟶ℝ*)
3021biimpri 228 . . . . . . . 8 (𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
3130adantl 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
32 fveq2 6822 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
3332eqeq1d 2733 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝐴𝑗) = -∞ ↔ (𝐴𝑖) = -∞))
34 fveq2 6822 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑓𝑗) = (𝑓𝑖))
3534oveq1d 7361 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑓𝑗) − 1) = ((𝑓𝑖) − 1))
3633, 35, 32ifbieq12d 4504 . . . . . . . 8 (𝑗 = 𝑖 → if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)) = if((𝐴𝑖) = -∞, ((𝑓𝑖) − 1), (𝐴𝑖)))
3736cbvmptv 5195 . . . . . . 7 (𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗))) = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝑓𝑖) − 1), (𝐴𝑖)))
38 fveq2 6822 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
3938eqeq1d 2733 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝐵𝑗) = +∞ ↔ (𝐵𝑖) = +∞))
4034oveq1d 7361 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑓𝑗) + 1) = ((𝑓𝑖) + 1))
4139, 40, 38ifbieq12d 4504 . . . . . . . 8 (𝑗 = 𝑖 → if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)) = if((𝐵𝑖) = +∞, ((𝑓𝑖) + 1), (𝐵𝑖)))
4241cbvmptv 5195 . . . . . . 7 (𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗))) = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝑓𝑖) + 1), (𝐵𝑖)))
43 eqid 2731 . . . . . . 7 X𝑖𝑋 (((𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)))‘𝑖)(,)((𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)))‘𝑖)) = X𝑖𝑋 (((𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)))‘𝑖)(,)((𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)))‘𝑖))
4425, 27, 29, 31, 37, 42, 43ioorrnopnxrlem 46343 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
4523, 44syldan 591 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
4645ralrimiva 3124 . . . 4 ((𝜑𝑋 ≠ ∅) → ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
47 eqid 2731 . . . . . . . 8 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
4847rrxtop 46326 . . . . . . 7 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
4924, 48syl 17 . . . . . 6 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
5049adantr 480 . . . . 5 ((𝜑𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
51 eltop2 22888 . . . . 5 ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
5250, 51syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
5346, 52mpbird 257 . . 3 ((𝜑𝑋 ≠ ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
5416, 53syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
5514, 54pm2.61dan 812 1 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3902  c0 4283  ifcif 4475  {csn 4576  {cpr 4578  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  Xcixp 8821  Fincfn 8869  1c1 11004   + caddc 11006  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142  cmin 11341  (,)cioo 13242  TopOpenctopn 17322  Topctop 22806  ℝ^crrx 25308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ico 13248  df-fz 13405  df-fzo 13552  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-prds 17348  df-pws 17350  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20459  df-subrg 20483  df-drng 20644  df-field 20645  df-abv 20722  df-staf 20752  df-srng 20753  df-lmod 20793  df-lss 20863  df-lmhm 20954  df-lvec 21035  df-sra 21105  df-rgmod 21106  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-refld 21540  df-phl 21561  df-dsmm 21667  df-frlm 21682  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-xms 24233  df-ms 24234  df-nm 24495  df-ngp 24496  df-tng 24497  df-nrg 24498  df-nlm 24499  df-clm 24988  df-cph 25093  df-tcph 25094  df-rrx 25310
This theorem is referenced by:  ioovonmbl  46714
  Copyright terms: Public domain W3C validator