![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioorrnopnxr | Structured version Visualization version GIF version |
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 45479 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
ioorrnopnxr.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ioorrnopnxr.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) |
ioorrnopnxr.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) |
Ref | Expression |
---|---|
ioorrnopnxr | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 5382 | . . . . . 6 ⊢ {∅} ∈ V | |
2 | 1 | prid2 4767 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 = ∅ → {∅} ∈ {∅, {∅}}) |
4 | ixpeq1 8908 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) | |
5 | ixp0x 8926 | . . . . . . 7 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅} | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
7 | 4, 6 | eqtrd 2771 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
8 | 2fveq3 6896 | . . . . . 6 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅))) | |
9 | rrxtopn0b 45470 | . . . . . . 7 ⊢ (TopOpen‘(ℝ^‘∅)) = {∅, {∅}} | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}) |
11 | 8, 10 | eqtrd 2771 | . . . . 5 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}}) |
12 | 7, 11 | eleq12d 2826 | . . . 4 ⊢ (𝑋 = ∅ → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}})) |
13 | 3, 12 | mpbird 257 | . . 3 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
14 | 13 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
15 | neqne 2947 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
17 | fveq2 6891 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) | |
18 | fveq2 6891 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) | |
19 | 17, 18 | oveq12d 7430 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
20 | 19 | cbvixpv 8915 | . . . . . . . . 9 ⊢ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) |
21 | 20 | eleq2i 2824 | . . . . . . . 8 ⊢ (𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ↔ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
22 | 21 | biimpi 215 | . . . . . . 7 ⊢ (𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
23 | 22 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
24 | ioorrnopnxr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
25 | 24 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑋 ∈ Fin) |
26 | ioorrnopnxr.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) | |
27 | 26 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐴:𝑋⟶ℝ*) |
28 | ioorrnopnxr.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) | |
29 | 28 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐵:𝑋⟶ℝ*) |
30 | 21 | biimpri 227 | . . . . . . . 8 ⊢ (𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
31 | 30 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
32 | fveq2 6891 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝐴‘𝑗) = (𝐴‘𝑖)) | |
33 | 32 | eqeq1d 2733 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝐴‘𝑗) = -∞ ↔ (𝐴‘𝑖) = -∞)) |
34 | fveq2 6891 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑓‘𝑗) = (𝑓‘𝑖)) | |
35 | 34 | oveq1d 7427 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) − 1) = ((𝑓‘𝑖) − 1)) |
36 | 33, 35, 32 | ifbieq12d 4556 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)) = if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
37 | 36 | cbvmptv 5261 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
38 | fveq2 6891 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝐵‘𝑗) = (𝐵‘𝑖)) | |
39 | 38 | eqeq1d 2733 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝐵‘𝑗) = +∞ ↔ (𝐵‘𝑖) = +∞)) |
40 | 34 | oveq1d 7427 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) + 1) = ((𝑓‘𝑖) + 1)) |
41 | 39, 40, 38 | ifbieq12d 4556 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)) = if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
42 | 41 | cbvmptv 5261 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
43 | eqid 2731 | . . . . . . 7 ⊢ X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) = X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) | |
44 | 25, 27, 29, 31, 37, 42, 43 | ioorrnopnxrlem 45480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
45 | 23, 44 | syldan 590 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
46 | 45 | ralrimiva 3145 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
47 | eqid 2731 | . . . . . . . 8 ⊢ (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋)) | |
48 | 47 | rrxtop 45463 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
49 | 24, 48 | syl 17 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
50 | 49 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
51 | eltop2 22797 | . . . . 5 ⊢ ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) | |
52 | 50, 51 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
53 | 46, 52 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
54 | 16, 53 | syldan 590 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
55 | 14, 54 | pm2.61dan 810 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ⊆ wss 3948 ∅c0 4322 ifcif 4528 {csn 4628 {cpr 4630 ↦ cmpt 5231 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 Xcixp 8897 Fincfn 8945 1c1 11117 + caddc 11119 +∞cpnf 11252 -∞cmnf 11253 ℝ*cxr 11254 − cmin 11451 (,)cioo 13331 TopOpenctopn 17374 Topctop 22714 ℝ^crrx 25230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ico 13337 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-prds 17400 df-pws 17402 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-ghm 19135 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-rhm 20370 df-subrng 20442 df-subrg 20467 df-drng 20585 df-field 20586 df-abv 20656 df-staf 20684 df-srng 20685 df-lmod 20704 df-lss 20775 df-lmhm 20865 df-lvec 20946 df-sra 21018 df-rgmod 21019 df-psmet 21224 df-xmet 21225 df-met 21226 df-bl 21227 df-mopn 21228 df-cnfld 21233 df-refld 21467 df-phl 21488 df-dsmm 21596 df-frlm 21611 df-top 22715 df-topon 22732 df-topsp 22754 df-bases 22768 df-xms 24145 df-ms 24146 df-nm 24410 df-ngp 24411 df-tng 24412 df-nrg 24413 df-nlm 24414 df-clm 24909 df-cph 25015 df-tcph 25016 df-rrx 25232 |
This theorem is referenced by: ioovonmbl 45851 |
Copyright terms: Public domain | W3C validator |