Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnxr Structured version   Visualization version   GIF version

Theorem ioorrnopnxr 43337
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 43335 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnxr.x (𝜑𝑋 ∈ Fin)
ioorrnopnxr.a (𝜑𝐴:𝑋⟶ℝ*)
ioorrnopnxr.b (𝜑𝐵:𝑋⟶ℝ*)
Assertion
Ref Expression
ioorrnopnxr (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem ioorrnopnxr
Dummy variables 𝑓 𝑗 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 5253 . . . . . 6 {∅} ∈ V
21prid2 4656 . . . . 5 {∅} ∈ {∅, {∅}}
32a1i 11 . . . 4 (𝑋 = ∅ → {∅} ∈ {∅, {∅}})
4 ixpeq1 8490 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)))
5 ixp0x 8508 . . . . . . 7 X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅}
65a1i 11 . . . . . 6 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
74, 6eqtrd 2793 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
8 2fveq3 6663 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅)))
9 rrxtopn0b 43326 . . . . . . 7 (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
109a1i 11 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}})
118, 10eqtrd 2793 . . . . 5 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}})
127, 11eleq12d 2846 . . . 4 (𝑋 = ∅ → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}}))
133, 12mpbird 260 . . 3 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
1413adantl 485 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
15 neqne 2959 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1615adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
17 fveq2 6658 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
18 fveq2 6658 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
1917, 18oveq12d 7168 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐴𝑖)(,)(𝐵𝑖)) = ((𝐴𝑗)(,)(𝐵𝑗)))
2019cbvixpv 8497 . . . . . . . . 9 X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))
2120eleq2i 2843 . . . . . . . 8 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2221biimpi 219 . . . . . . 7 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2322adantl 485 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
24 ioorrnopnxr.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
2524ad2antrr 725 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ∈ Fin)
26 ioorrnopnxr.a . . . . . . . 8 (𝜑𝐴:𝑋⟶ℝ*)
2726ad2antrr 725 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐴:𝑋⟶ℝ*)
28 ioorrnopnxr.b . . . . . . . 8 (𝜑𝐵:𝑋⟶ℝ*)
2928ad2antrr 725 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐵:𝑋⟶ℝ*)
3021biimpri 231 . . . . . . . 8 (𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
3130adantl 485 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
32 fveq2 6658 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
3332eqeq1d 2760 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝐴𝑗) = -∞ ↔ (𝐴𝑖) = -∞))
34 fveq2 6658 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑓𝑗) = (𝑓𝑖))
3534oveq1d 7165 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑓𝑗) − 1) = ((𝑓𝑖) − 1))
3633, 35, 32ifbieq12d 4448 . . . . . . . 8 (𝑗 = 𝑖 → if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)) = if((𝐴𝑖) = -∞, ((𝑓𝑖) − 1), (𝐴𝑖)))
3736cbvmptv 5135 . . . . . . 7 (𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗))) = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝑓𝑖) − 1), (𝐴𝑖)))
38 fveq2 6658 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
3938eqeq1d 2760 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝐵𝑗) = +∞ ↔ (𝐵𝑖) = +∞))
4034oveq1d 7165 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑓𝑗) + 1) = ((𝑓𝑖) + 1))
4139, 40, 38ifbieq12d 4448 . . . . . . . 8 (𝑗 = 𝑖 → if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)) = if((𝐵𝑖) = +∞, ((𝑓𝑖) + 1), (𝐵𝑖)))
4241cbvmptv 5135 . . . . . . 7 (𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗))) = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝑓𝑖) + 1), (𝐵𝑖)))
43 eqid 2758 . . . . . . 7 X𝑖𝑋 (((𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)))‘𝑖)(,)((𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)))‘𝑖)) = X𝑖𝑋 (((𝑗𝑋 ↦ if((𝐴𝑗) = -∞, ((𝑓𝑗) − 1), (𝐴𝑗)))‘𝑖)(,)((𝑗𝑋 ↦ if((𝐵𝑗) = +∞, ((𝑓𝑗) + 1), (𝐵𝑗)))‘𝑖))
4425, 27, 29, 31, 37, 42, 43ioorrnopnxrlem 43336 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
4523, 44syldan 594 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
4645ralrimiva 3113 . . . 4 ((𝜑𝑋 ≠ ∅) → ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
47 eqid 2758 . . . . . . . 8 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
4847rrxtop 43319 . . . . . . 7 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
4924, 48syl 17 . . . . . 6 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
5049adantr 484 . . . . 5 ((𝜑𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
51 eltop2 21675 . . . . 5 ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
5250, 51syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
5346, 52mpbird 260 . . 3 ((𝜑𝑋 ≠ ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
5416, 53syldan 594 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
5514, 54pm2.61dan 812 1 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  wss 3858  c0 4225  ifcif 4420  {csn 4522  {cpr 4524  cmpt 5112  wf 6331  cfv 6335  (class class class)co 7150  Xcixp 8479  Fincfn 8527  1c1 10576   + caddc 10578  +∞cpnf 10710  -∞cmnf 10711  *cxr 10712  cmin 10908  (,)cioo 12779  TopOpenctopn 16753  Topctop 21593  ℝ^crrx 24083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ico 12785  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-prds 16779  df-pws 16781  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-submnd 18023  df-grp 18172  df-minusg 18173  df-sbg 18174  df-subg 18343  df-ghm 18423  df-cntz 18514  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-dvr 19504  df-rnghom 19538  df-drng 19572  df-field 19573  df-subrg 19601  df-abv 19656  df-staf 19684  df-srng 19685  df-lmod 19704  df-lss 19772  df-lmhm 19862  df-lvec 19943  df-sra 20012  df-rgmod 20013  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-cnfld 20167  df-refld 20370  df-phl 20391  df-dsmm 20497  df-frlm 20512  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-xms 23022  df-ms 23023  df-nm 23284  df-ngp 23285  df-tng 23286  df-nrg 23287  df-nlm 23288  df-clm 23764  df-cph 23869  df-tcph 23870  df-rrx 24085
This theorem is referenced by:  ioovonmbl  43704
  Copyright terms: Public domain W3C validator