Step | Hyp | Ref
| Expression |
1 | | p0ex 5302 |
. . . . . 6
⊢ {∅}
∈ V |
2 | 1 | prid2 4696 |
. . . . 5
⊢ {∅}
∈ {∅, {∅}} |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝑋 = ∅ → {∅}
∈ {∅, {∅}}) |
4 | | ixpeq1 8654 |
. . . . . 6
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
5 | | ixp0x 8672 |
. . . . . . 7
⊢ X𝑖 ∈
∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅} |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝑋 = ∅ → X𝑖 ∈
∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
7 | 4, 6 | eqtrd 2778 |
. . . . 5
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
8 | | 2fveq3 6761 |
. . . . . 6
⊢ (𝑋 = ∅ →
(TopOpen‘(ℝ^‘𝑋)) =
(TopOpen‘(ℝ^‘∅))) |
9 | | rrxtopn0b 43727 |
. . . . . . 7
⊢
(TopOpen‘(ℝ^‘∅)) = {∅,
{∅}} |
10 | 9 | a1i 11 |
. . . . . 6
⊢ (𝑋 = ∅ →
(TopOpen‘(ℝ^‘∅)) = {∅,
{∅}}) |
11 | 8, 10 | eqtrd 2778 |
. . . . 5
⊢ (𝑋 = ∅ →
(TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}}) |
12 | 7, 11 | eleq12d 2833 |
. . . 4
⊢ (𝑋 = ∅ → (X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅,
{∅}})) |
13 | 3, 12 | mpbird 256 |
. . 3
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
14 | 13 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
15 | | neqne 2950 |
. . . 4
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
16 | 15 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
17 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) |
18 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) |
19 | 17, 18 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
20 | 19 | cbvixpv 8661 |
. . . . . . . . 9
⊢ X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) |
21 | 20 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑓 ∈ X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ↔ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
22 | 21 | biimpi 215 |
. . . . . . 7
⊢ (𝑓 ∈ X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
23 | 22 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
24 | | ioorrnopnxr.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
25 | 24 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑋 ∈ Fin) |
26 | | ioorrnopnxr.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) |
27 | 26 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐴:𝑋⟶ℝ*) |
28 | | ioorrnopnxr.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) |
29 | 28 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐵:𝑋⟶ℝ*) |
30 | 21 | biimpri 227 |
. . . . . . . 8
⊢ (𝑓 ∈ X𝑗 ∈
𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
31 | 30 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
32 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝐴‘𝑗) = (𝐴‘𝑖)) |
33 | 32 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝐴‘𝑗) = -∞ ↔ (𝐴‘𝑖) = -∞)) |
34 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑓‘𝑗) = (𝑓‘𝑖)) |
35 | 34 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) − 1) = ((𝑓‘𝑖) − 1)) |
36 | 33, 35, 32 | ifbieq12d 4484 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)) = if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
37 | 36 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
38 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝐵‘𝑗) = (𝐵‘𝑖)) |
39 | 38 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝐵‘𝑗) = +∞ ↔ (𝐵‘𝑖) = +∞)) |
40 | 34 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) + 1) = ((𝑓‘𝑖) + 1)) |
41 | 39, 40, 38 | ifbieq12d 4484 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)) = if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
42 | 41 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
43 | | eqid 2738 |
. . . . . . 7
⊢ X𝑖 ∈
𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) = X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) |
44 | 25, 27, 29, 31, 37, 42, 43 | ioorrnopnxrlem 43737 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
45 | 23, 44 | syldan 590 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
46 | 45 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∀𝑓 ∈ X
𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
47 | | eqid 2738 |
. . . . . . . 8
⊢
(TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋)) |
48 | 47 | rrxtop 43720 |
. . . . . . 7
⊢ (𝑋 ∈ Fin →
(TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
49 | 24, 48 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
50 | 49 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
51 | | eltop2 22033 |
. . . . 5
⊢
((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
52 | 50, 51 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
53 | 46, 52 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
54 | 16, 53 | syldan 590 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
55 | 14, 54 | pm2.61dan 809 |
1
⊢ (𝜑 → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |