| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ioorrnopnxr | Structured version Visualization version GIF version | ||
| Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 46287 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| ioorrnopnxr.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| ioorrnopnxr.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) |
| ioorrnopnxr.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) |
| Ref | Expression |
|---|---|
| ioorrnopnxr | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0ex 5326 | . . . . . 6 ⊢ {∅} ∈ V | |
| 2 | 1 | prid2 4717 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 = ∅ → {∅} ∈ {∅, {∅}}) |
| 4 | ixpeq1 8842 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) | |
| 5 | ixp0x 8860 | . . . . . . 7 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅} | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
| 7 | 4, 6 | eqtrd 2764 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
| 8 | 2fveq3 6831 | . . . . . 6 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅))) | |
| 9 | rrxtopn0b 46278 | . . . . . . 7 ⊢ (TopOpen‘(ℝ^‘∅)) = {∅, {∅}} | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}) |
| 11 | 8, 10 | eqtrd 2764 | . . . . 5 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}}) |
| 12 | 7, 11 | eleq12d 2822 | . . . 4 ⊢ (𝑋 = ∅ → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}})) |
| 13 | 3, 12 | mpbird 257 | . . 3 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| 15 | neqne 2933 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 17 | fveq2 6826 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) | |
| 18 | fveq2 6826 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) | |
| 19 | 17, 18 | oveq12d 7371 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
| 20 | 19 | cbvixpv 8849 | . . . . . . . . 9 ⊢ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) |
| 21 | 20 | eleq2i 2820 | . . . . . . . 8 ⊢ (𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ↔ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
| 22 | 21 | biimpi 216 | . . . . . . 7 ⊢ (𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
| 23 | 22 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
| 24 | ioorrnopnxr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 25 | 24 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑋 ∈ Fin) |
| 26 | ioorrnopnxr.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) | |
| 27 | 26 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐴:𝑋⟶ℝ*) |
| 28 | ioorrnopnxr.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) | |
| 29 | 28 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐵:𝑋⟶ℝ*) |
| 30 | 21 | biimpri 228 | . . . . . . . 8 ⊢ (𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
| 31 | 30 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
| 32 | fveq2 6826 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝐴‘𝑗) = (𝐴‘𝑖)) | |
| 33 | 32 | eqeq1d 2731 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝐴‘𝑗) = -∞ ↔ (𝐴‘𝑖) = -∞)) |
| 34 | fveq2 6826 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑓‘𝑗) = (𝑓‘𝑖)) | |
| 35 | 34 | oveq1d 7368 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) − 1) = ((𝑓‘𝑖) − 1)) |
| 36 | 33, 35, 32 | ifbieq12d 4507 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)) = if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
| 37 | 36 | cbvmptv 5199 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
| 38 | fveq2 6826 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝐵‘𝑗) = (𝐵‘𝑖)) | |
| 39 | 38 | eqeq1d 2731 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝐵‘𝑗) = +∞ ↔ (𝐵‘𝑖) = +∞)) |
| 40 | 34 | oveq1d 7368 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) + 1) = ((𝑓‘𝑖) + 1)) |
| 41 | 39, 40, 38 | ifbieq12d 4507 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)) = if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
| 42 | 41 | cbvmptv 5199 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
| 43 | eqid 2729 | . . . . . . 7 ⊢ X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) = X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) | |
| 44 | 25, 27, 29, 31, 37, 42, 43 | ioorrnopnxrlem 46288 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
| 45 | 23, 44 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
| 46 | 45 | ralrimiva 3121 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
| 47 | eqid 2729 | . . . . . . . 8 ⊢ (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋)) | |
| 48 | 47 | rrxtop 46271 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
| 49 | 24, 48 | syl 17 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
| 50 | 49 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
| 51 | eltop2 22878 | . . . . 5 ⊢ ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) | |
| 52 | 50, 51 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
| 53 | 46, 52 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| 54 | 16, 53 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| 55 | 14, 54 | pm2.61dan 812 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ∅c0 4286 ifcif 4478 {csn 4579 {cpr 4581 ↦ cmpt 5176 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Xcixp 8831 Fincfn 8879 1c1 11029 + caddc 11031 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 − cmin 11365 (,)cioo 13266 TopOpenctopn 17343 Topctop 22796 ℝ^crrx 25299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-prds 17369 df-pws 17371 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-field 20635 df-abv 20712 df-staf 20742 df-srng 20743 df-lmod 20783 df-lss 20853 df-lmhm 20944 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-refld 21530 df-phl 21551 df-dsmm 21657 df-frlm 21672 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-xms 24224 df-ms 24225 df-nm 24486 df-ngp 24487 df-tng 24488 df-nrg 24489 df-nlm 24490 df-clm 24979 df-cph 25084 df-tcph 25085 df-rrx 25301 |
| This theorem is referenced by: ioovonmbl 46659 |
| Copyright terms: Public domain | W3C validator |