| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ioorrnopnxr | Structured version Visualization version GIF version | ||
| Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 46282 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| ioorrnopnxr.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| ioorrnopnxr.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) |
| ioorrnopnxr.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) |
| Ref | Expression |
|---|---|
| ioorrnopnxr | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0ex 5354 | . . . . . 6 ⊢ {∅} ∈ V | |
| 2 | 1 | prid2 4739 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 = ∅ → {∅} ∈ {∅, {∅}}) |
| 4 | ixpeq1 8920 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) | |
| 5 | ixp0x 8938 | . . . . . . 7 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅} | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
| 7 | 4, 6 | eqtrd 2770 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
| 8 | 2fveq3 6880 | . . . . . 6 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅))) | |
| 9 | rrxtopn0b 46273 | . . . . . . 7 ⊢ (TopOpen‘(ℝ^‘∅)) = {∅, {∅}} | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}) |
| 11 | 8, 10 | eqtrd 2770 | . . . . 5 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}}) |
| 12 | 7, 11 | eleq12d 2828 | . . . 4 ⊢ (𝑋 = ∅ → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}})) |
| 13 | 3, 12 | mpbird 257 | . . 3 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| 15 | neqne 2940 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 17 | fveq2 6875 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) | |
| 18 | fveq2 6875 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) | |
| 19 | 17, 18 | oveq12d 7421 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
| 20 | 19 | cbvixpv 8927 | . . . . . . . . 9 ⊢ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) |
| 21 | 20 | eleq2i 2826 | . . . . . . . 8 ⊢ (𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ↔ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
| 22 | 21 | biimpi 216 | . . . . . . 7 ⊢ (𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
| 23 | 22 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
| 24 | ioorrnopnxr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 25 | 24 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑋 ∈ Fin) |
| 26 | ioorrnopnxr.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) | |
| 27 | 26 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐴:𝑋⟶ℝ*) |
| 28 | ioorrnopnxr.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) | |
| 29 | 28 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐵:𝑋⟶ℝ*) |
| 30 | 21 | biimpri 228 | . . . . . . . 8 ⊢ (𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
| 31 | 30 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
| 32 | fveq2 6875 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝐴‘𝑗) = (𝐴‘𝑖)) | |
| 33 | 32 | eqeq1d 2737 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝐴‘𝑗) = -∞ ↔ (𝐴‘𝑖) = -∞)) |
| 34 | fveq2 6875 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑓‘𝑗) = (𝑓‘𝑖)) | |
| 35 | 34 | oveq1d 7418 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) − 1) = ((𝑓‘𝑖) − 1)) |
| 36 | 33, 35, 32 | ifbieq12d 4529 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)) = if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
| 37 | 36 | cbvmptv 5225 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
| 38 | fveq2 6875 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝐵‘𝑗) = (𝐵‘𝑖)) | |
| 39 | 38 | eqeq1d 2737 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝐵‘𝑗) = +∞ ↔ (𝐵‘𝑖) = +∞)) |
| 40 | 34 | oveq1d 7418 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) + 1) = ((𝑓‘𝑖) + 1)) |
| 41 | 39, 40, 38 | ifbieq12d 4529 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)) = if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
| 42 | 41 | cbvmptv 5225 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
| 43 | eqid 2735 | . . . . . . 7 ⊢ X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) = X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) | |
| 44 | 25, 27, 29, 31, 37, 42, 43 | ioorrnopnxrlem 46283 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
| 45 | 23, 44 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
| 46 | 45 | ralrimiva 3132 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
| 47 | eqid 2735 | . . . . . . . 8 ⊢ (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋)) | |
| 48 | 47 | rrxtop 46266 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
| 49 | 24, 48 | syl 17 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
| 50 | 49 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
| 51 | eltop2 22911 | . . . . 5 ⊢ ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) | |
| 52 | 50, 51 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
| 53 | 46, 52 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| 54 | 16, 53 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| 55 | 14, 54 | pm2.61dan 812 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 ifcif 4500 {csn 4601 {cpr 4603 ↦ cmpt 5201 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 Xcixp 8909 Fincfn 8957 1c1 11128 + caddc 11130 +∞cpnf 11264 -∞cmnf 11265 ℝ*cxr 11266 − cmin 11464 (,)cioo 13360 TopOpenctopn 17433 Topctop 22829 ℝ^crrx 25333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ico 13366 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-sum 15701 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-prds 17459 df-pws 17461 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-rhm 20430 df-subrng 20504 df-subrg 20528 df-drng 20689 df-field 20690 df-abv 20767 df-staf 20797 df-srng 20798 df-lmod 20817 df-lss 20887 df-lmhm 20978 df-lvec 21059 df-sra 21129 df-rgmod 21130 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-refld 21563 df-phl 21584 df-dsmm 21690 df-frlm 21705 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-xms 24257 df-ms 24258 df-nm 24519 df-ngp 24520 df-tng 24521 df-nrg 24522 df-nlm 24523 df-clm 25012 df-cph 25118 df-tcph 25119 df-rrx 25335 |
| This theorem is referenced by: ioovonmbl 46654 |
| Copyright terms: Public domain | W3C validator |