![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioorrnopnxr | Structured version Visualization version GIF version |
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 46261 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
ioorrnopnxr.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ioorrnopnxr.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) |
ioorrnopnxr.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) |
Ref | Expression |
---|---|
ioorrnopnxr | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 5390 | . . . . . 6 ⊢ {∅} ∈ V | |
2 | 1 | prid2 4768 | . . . . 5 ⊢ {∅} ∈ {∅, {∅}} |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 = ∅ → {∅} ∈ {∅, {∅}}) |
4 | ixpeq1 8947 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) | |
5 | ixp0x 8965 | . . . . . . 7 ⊢ X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅} | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
7 | 4, 6 | eqtrd 2775 | . . . . 5 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
8 | 2fveq3 6912 | . . . . . 6 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅))) | |
9 | rrxtopn0b 46252 | . . . . . . 7 ⊢ (TopOpen‘(ℝ^‘∅)) = {∅, {∅}} | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}) |
11 | 8, 10 | eqtrd 2775 | . . . . 5 ⊢ (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}}) |
12 | 7, 11 | eleq12d 2833 | . . . 4 ⊢ (𝑋 = ∅ → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}})) |
13 | 3, 12 | mpbird 257 | . . 3 ⊢ (𝑋 = ∅ → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
14 | 13 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
15 | neqne 2946 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
17 | fveq2 6907 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) | |
18 | fveq2 6907 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) | |
19 | 17, 18 | oveq12d 7449 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑗 → ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
20 | 19 | cbvixpv 8954 | . . . . . . . . 9 ⊢ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) |
21 | 20 | eleq2i 2831 | . . . . . . . 8 ⊢ (𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ↔ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
22 | 21 | biimpi 216 | . . . . . . 7 ⊢ (𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
23 | 22 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
24 | ioorrnopnxr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
25 | 24 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑋 ∈ Fin) |
26 | ioorrnopnxr.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) | |
27 | 26 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐴:𝑋⟶ℝ*) |
28 | ioorrnopnxr.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) | |
29 | 28 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐵:𝑋⟶ℝ*) |
30 | 21 | biimpri 228 | . . . . . . . 8 ⊢ (𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
31 | 30 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
32 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝐴‘𝑗) = (𝐴‘𝑖)) | |
33 | 32 | eqeq1d 2737 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝐴‘𝑗) = -∞ ↔ (𝐴‘𝑖) = -∞)) |
34 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝑓‘𝑗) = (𝑓‘𝑖)) | |
35 | 34 | oveq1d 7446 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) − 1) = ((𝑓‘𝑖) − 1)) |
36 | 33, 35, 32 | ifbieq12d 4559 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)) = if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
37 | 36 | cbvmptv 5261 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝑓‘𝑖) − 1), (𝐴‘𝑖))) |
38 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑖 → (𝐵‘𝑗) = (𝐵‘𝑖)) | |
39 | 38 | eqeq1d 2737 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝐵‘𝑗) = +∞ ↔ (𝐵‘𝑖) = +∞)) |
40 | 34 | oveq1d 7446 | . . . . . . . . 9 ⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) + 1) = ((𝑓‘𝑖) + 1)) |
41 | 39, 40, 38 | ifbieq12d 4559 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)) = if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
42 | 41 | cbvmptv 5261 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗))) = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝑓‘𝑖) + 1), (𝐵‘𝑖))) |
43 | eqid 2735 | . . . . . . 7 ⊢ X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) = X𝑖 ∈ 𝑋 (((𝑗 ∈ 𝑋 ↦ if((𝐴‘𝑗) = -∞, ((𝑓‘𝑗) − 1), (𝐴‘𝑗)))‘𝑖)(,)((𝑗 ∈ 𝑋 ↦ if((𝐵‘𝑗) = +∞, ((𝑓‘𝑗) + 1), (𝐵‘𝑗)))‘𝑖)) | |
44 | 25, 27, 29, 31, 37, 42, 43 | ioorrnopnxrlem 46262 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
45 | 23, 44 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
46 | 45 | ralrimiva 3144 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
47 | eqid 2735 | . . . . . . . 8 ⊢ (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋)) | |
48 | 47 | rrxtop 46245 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
49 | 24, 48 | syl 17 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
50 | 49 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
51 | eltop2 22998 | . . . . 5 ⊢ ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) | |
52 | 50, 51 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
53 | 46, 52 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
54 | 16, 53 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
55 | 14, 54 | pm2.61dan 813 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ∅c0 4339 ifcif 4531 {csn 4631 {cpr 4633 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Xcixp 8936 Fincfn 8984 1c1 11154 + caddc 11156 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 − cmin 11490 (,)cioo 13384 TopOpenctopn 17468 Topctop 22915 ℝ^crrx 25431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-drng 20748 df-field 20749 df-abv 20827 df-staf 20857 df-srng 20858 df-lmod 20877 df-lss 20948 df-lmhm 21039 df-lvec 21120 df-sra 21190 df-rgmod 21191 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-refld 21641 df-phl 21662 df-dsmm 21770 df-frlm 21785 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-xms 24346 df-ms 24347 df-nm 24611 df-ngp 24612 df-tng 24613 df-nrg 24614 df-nlm 24615 df-clm 25110 df-cph 25216 df-tcph 25217 df-rrx 25433 |
This theorem is referenced by: ioovonmbl 46633 |
Copyright terms: Public domain | W3C validator |