Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoi Structured version   Visualization version   GIF version

Theorem ovnhoi 41483
Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoi.x (𝜑𝑋 ∈ Fin)
ovnhoi.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoi.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoi.c 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoi.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
ovnhoi (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem ovnhoi
Dummy variables 𝑐 𝑑 𝑖 𝑗 𝑛 𝑧 𝑦 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnhoi.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnhoi.c . . . . 5 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
32a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
4 nfv 2009 . . . . 5 𝑘𝜑
5 ovnhoi.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
65ffvelrnda 6553 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
7 ovnhoi.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87ffvelrnda 6553 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
98rexrd 10347 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
104, 6, 9hoissrrn2 41458 . . . 4 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
113, 10eqsstrd 3801 . . 3 (𝜑𝐼 ⊆ (ℝ ↑𝑚 𝑋))
121, 11ovnxrcl 41449 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) ∈ ℝ*)
13 icossxr 12467 . . 3 (0[,)+∞) ⊆ ℝ*
14 ovnhoi.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1514, 1, 5, 7hoidmvcl 41462 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ (0[,)+∞))
1613, 15sseldi 3761 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ ℝ*)
17 fveq2 6379 . . . . . . . 8 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
1817fveq1d 6381 . . . . . . 7 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐼) = ((voln*‘∅)‘𝐼))
1918adantl 473 . . . . . 6 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = ((voln*‘∅)‘𝐼))
20 ixpeq1 8128 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)))
21 ixp0x 8145 . . . . . . . . . . . 12 X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)) = {∅}
2221a1i 11 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
2320, 22eqtrd 2799 . . . . . . . . . 10 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
2423adantl 473 . . . . . . . . 9 ((𝜑𝑋 = ∅) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
252a1i 11 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
26 reex 10284 . . . . . . . . . . 11 ℝ ∈ V
27 mapdm0 8079 . . . . . . . . . . 11 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
2826, 27ax-mp 5 . . . . . . . . . 10 (ℝ ↑𝑚 ∅) = {∅}
2928a1i 11 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 ∅) = {∅})
3024, 25, 293eqtr4d 2809 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐼 = (ℝ ↑𝑚 ∅))
31 eqimss 3819 . . . . . . . 8 (𝐼 = (ℝ ↑𝑚 ∅) → 𝐼 ⊆ (ℝ ↑𝑚 ∅))
3230, 31syl 17 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐼 ⊆ (ℝ ↑𝑚 ∅))
3332ovn0val 41430 . . . . . 6 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐼) = 0)
3419, 33eqtrd 2799 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = 0)
35 0red 10301 . . . . 5 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
3634, 35eqeltrd 2844 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ∈ ℝ)
37 eqidd 2766 . . . . 5 ((𝜑𝑋 = ∅) → 0 = 0)
38 fveq2 6379 . . . . . . . 8 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3938oveqd 6863 . . . . . . 7 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
4039adantl 473 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
415adantr 472 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
42 simpr 477 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
4342feq2d 6211 . . . . . . . 8 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
4441, 43mpbid 223 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
457adantr 472 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
4642feq2d 6211 . . . . . . . 8 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
4745, 46mpbid 223 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
4814, 44, 47hoidmv0val 41463 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
4940, 48eqtrd 2799 . . . . 5 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
5037, 34, 493eqtr4d 2809 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
5136, 50eqled 10399 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
52 eqid 2765 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
53 eqeq1 2769 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 = 1 ↔ 𝑗 = 1))
5453ifbid 4267 . . . . . . . 8 (𝑛 = 𝑗 → if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
5554mpteq2dv 4906 . . . . . . 7 (𝑛 = 𝑗 → (𝑘𝑋 ↦ if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
5655cbvmptv 4911 . . . . . 6 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
571, 5, 7, 2, 52, 56ovnhoilem1 41481 . . . . 5 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5857adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
591adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
60 neqne 2945 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
6160adantl 473 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
625adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
637adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
6414, 59, 61, 62, 63hoidmvn0val 41464 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
6564eqcomd 2771 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (𝐴(𝐿𝑋)𝐵))
6658, 65breqtrd 4837 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
6751, 66pm2.61dan 847 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
6849, 35eqeltrd 2844 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ∈ ℝ)
6950eqcomd 2771 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = ((voln*‘𝑋)‘𝐼))
7068, 69eqled 10399 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
71 fveq1 6378 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (𝑎𝑘) = (𝑐𝑘))
7271fvoveq1d 6868 . . . . . . . . . . 11 (𝑎 = 𝑐 → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝑐𝑘)[,)(𝑏𝑘))))
7372prodeq2ad 40488 . . . . . . . . . 10 (𝑎 = 𝑐 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘))))
7473ifeq2d 4264 . . . . . . . . 9 (𝑎 = 𝑐 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘)))))
75 fveq1 6378 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝑏𝑘) = (𝑑𝑘))
7675oveq2d 6862 . . . . . . . . . . . 12 (𝑏 = 𝑑 → ((𝑐𝑘)[,)(𝑏𝑘)) = ((𝑐𝑘)[,)(𝑑𝑘)))
7776fveq2d 6383 . . . . . . . . . . 11 (𝑏 = 𝑑 → (vol‘((𝑐𝑘)[,)(𝑏𝑘))) = (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
7877prodeq2ad 40488 . . . . . . . . . 10 (𝑏 = 𝑑 → ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
7978ifeq2d 4264 . . . . . . . . 9 (𝑏 = 𝑑 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8074, 79cbvmpt2v 6937 . . . . . . . 8 (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8180a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
82 oveq2 6854 . . . . . . . 8 (𝑥 = 𝑦 → (ℝ ↑𝑚 𝑥) = (ℝ ↑𝑚 𝑦))
83 eqeq1 2769 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
84 prodeq1 14938 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))) = ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
8583, 84ifbieq2d 4270 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8682, 82, 85mpt2eq123dv 6919 . . . . . . 7 (𝑥 = 𝑦 → (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8781, 86eqtrd 2799 . . . . . 6 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8887cbvmptv 4911 . . . . 5 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8914, 88eqtri 2787 . . . 4 𝐿 = (𝑦 ∈ Fin ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
90 eqeq1 2769 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))))
9190anbi2d 622 . . . . . . 7 (𝑤 = 𝑧 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))))
9291rexbidv 3199 . . . . . 6 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))))
93 simpl 474 . . . . . . . . . . . . . . 15 (( = 𝑖𝑗 ∈ ℕ) → = 𝑖)
9493fveq1d 6381 . . . . . . . . . . . . . 14 (( = 𝑖𝑗 ∈ ℕ) → (𝑗) = (𝑖𝑗))
9594coeq2d 5455 . . . . . . . . . . . . 13 (( = 𝑖𝑗 ∈ ℕ) → ([,) ∘ (𝑗)) = ([,) ∘ (𝑖𝑗)))
9695fveq1d 6381 . . . . . . . . . . . 12 (( = 𝑖𝑗 ∈ ℕ) → (([,) ∘ (𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
9796ixpeq2dv 8133 . . . . . . . . . . 11 (( = 𝑖𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
9897iuneq2dv 4700 . . . . . . . . . 10 ( = 𝑖 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
9998sseq2d 3795 . . . . . . . . 9 ( = 𝑖 → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ↔ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
100 simpl 474 . . . . . . . . . . . . . . . . 17 (( = 𝑖𝑘𝑋) → = 𝑖)
101100fveq1d 6381 . . . . . . . . . . . . . . . 16 (( = 𝑖𝑘𝑋) → (𝑗) = (𝑖𝑗))
102101coeq2d 5455 . . . . . . . . . . . . . . 15 (( = 𝑖𝑘𝑋) → ([,) ∘ (𝑗)) = ([,) ∘ (𝑖𝑗)))
103102fveq1d 6381 . . . . . . . . . . . . . 14 (( = 𝑖𝑘𝑋) → (([,) ∘ (𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
104103fveq2d 6383 . . . . . . . . . . . . 13 (( = 𝑖𝑘𝑋) → (vol‘(([,) ∘ (𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
105104prodeq2dv 14952 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
106105mpteq2dv 4906 . . . . . . . . . . 11 ( = 𝑖 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
107106fveq2d 6383 . . . . . . . . . 10 ( = 𝑖 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
108107eqeq2d 2775 . . . . . . . . 9 ( = 𝑖 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
10999, 108anbi12d 624 . . . . . . . 8 ( = 𝑖 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
110109cbvrexv 3320 . . . . . . 7 (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
111110a1i 11 . . . . . 6 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
11292, 111bitrd 270 . . . . 5 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
113112cbvrabv 3348 . . . 4 {𝑤 ∈ ℝ* ∣ ∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
114 simpl 474 . . . . . . . . . 10 ((𝑗 = 𝑛𝑙𝑋) → 𝑗 = 𝑛)
115114fveq2d 6383 . . . . . . . . 9 ((𝑗 = 𝑛𝑙𝑋) → (𝑖𝑗) = (𝑖𝑛))
116115fveq1d 6381 . . . . . . . 8 ((𝑗 = 𝑛𝑙𝑋) → ((𝑖𝑗)‘𝑙) = ((𝑖𝑛)‘𝑙))
117116fveq2d 6383 . . . . . . 7 ((𝑗 = 𝑛𝑙𝑋) → (1st ‘((𝑖𝑗)‘𝑙)) = (1st ‘((𝑖𝑛)‘𝑙)))
118117mpteq2dva 4905 . . . . . 6 (𝑗 = 𝑛 → (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
119118cbvmptv 4911 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
120119mpteq2i 4902 . . . 4 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))))) = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
121116fveq2d 6383 . . . . . . 7 ((𝑗 = 𝑛𝑙𝑋) → (2nd ‘((𝑖𝑗)‘𝑙)) = (2nd ‘((𝑖𝑛)‘𝑙)))
122121mpteq2dva 4905 . . . . . 6 (𝑗 = 𝑛 → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
123122cbvmptv 4911 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
124123mpteq2i 4902 . . . 4 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))))) = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
12559, 61, 62, 63, 2, 89, 113, 120, 124ovnhoilem2 41482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
12670, 125pm2.61dan 847 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
12712, 16, 67, 126xrletrid 12195 1 (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wrex 3056  {crab 3059  Vcvv 3350  wss 3734  c0 4081  ifcif 4245  {csn 4336  cop 4342   ciun 4678   class class class wbr 4811  cmpt 4890   × cxp 5277  ccom 5283  wf 6066  cfv 6070  (class class class)co 6846  cmpt2 6848  1st c1st 7368  2nd c2nd 7369  𝑚 cmap 8064  Xcixp 8117  Fincfn 8164  cr 10192  0cc0 10193  1c1 10194  +∞cpnf 10329  *cxr 10331  cle 10333  cn 11279  [,)cico 12386  cprod 14934  volcvol 23537  Σ^csumge0 41242  voln*covoln 41416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-div 10944  df-nn 11280  df-2 11340  df-3 11341  df-n0 11544  df-z 11630  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12153  df-xadd 12154  df-xmul 12155  df-ioo 12388  df-ico 12390  df-icc 12391  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13016  df-exp 13075  df-hash 13329  df-cj 14140  df-re 14141  df-im 14142  df-sqrt 14276  df-abs 14277  df-clim 14520  df-rlim 14521  df-sum 14718  df-prod 14935  df-rest 16365  df-topgen 16386  df-psmet 20027  df-xmet 20028  df-met 20029  df-bl 20030  df-mopn 20031  df-top 20994  df-topon 21011  df-bases 21046  df-cmp 21486  df-ovol 23538  df-vol 23539  df-sumge0 41243  df-ovoln 41417
This theorem is referenced by:  vonhoi  41547
  Copyright terms: Public domain W3C validator