Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpconst | Structured version Visualization version GIF version |
Description: Infinite Cartesian product of a constant 𝐵. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
ixpconst.1 | ⊢ 𝐴 ∈ V |
ixpconst.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ixpconst | ⊢ X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpconst.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ixpconst.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | ixpconstg 8668 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 Vcvv 3430 (class class class)co 7268 ↑m cmap 8589 Xcixp 8659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-ixp 8660 |
This theorem is referenced by: pwcfsdom 10323 prdsvallem 17146 wunfunc 17595 wunfuncOLD 17596 wunnat 17653 wunnatOLD 17654 poimirlem30 35786 poimirlem32 35788 ovnovollem1 44148 ovnovollem2 44149 |
Copyright terms: Public domain | W3C validator |