MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpconst Structured version   Visualization version   GIF version

Theorem ixpconst 8840
Description: Infinite Cartesian product of a constant 𝐵. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ixpconst.1 𝐴 ∈ V
ixpconst.2 𝐵 ∈ V
Assertion
Ref Expression
ixpconst X𝑥𝐴 𝐵 = (𝐵m 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ixpconst
StepHypRef Expression
1 ixpconst.1 . 2 𝐴 ∈ V
2 ixpconst.2 . 2 𝐵 ∈ V
3 ixpconstg 8839 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → X𝑥𝐴 𝐵 = (𝐵m 𝐴))
41, 2, 3mp2an 692 1 X𝑥𝐴 𝐵 = (𝐵m 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  Vcvv 3438  (class class class)co 7355  m cmap 8759  Xcixp 8830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-ixp 8831
This theorem is referenced by:  pwcfsdom  10484  prdsvallem  17368  wunfunc  17818  wunnat  17876  poimirlem30  37700  poimirlem32  37702  ovnovollem1  46768  ovnovollem2  46769
  Copyright terms: Public domain W3C validator