Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopn Structured version   Visualization version   GIF version

Theorem ioorrnopn 42770
 Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopn.x (𝜑𝑋 ∈ Fin)
ioorrnopn.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopn.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
ioorrnopn (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem ioorrnopn
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 5258 . . . . . 6 {∅} ∈ V
21prid2 4672 . . . . 5 {∅} ∈ {∅, {∅}}
32a1i 11 . . . 4 (𝑋 = ∅ → {∅} ∈ {∅, {∅}})
4 ixpeq1 8447 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)))
5 ixp0x 8465 . . . . . . 7 X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅}
65a1i 11 . . . . . 6 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
74, 6eqtrd 2856 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
8 2fveq3 6648 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅)))
9 rrxtopn0b 42761 . . . . . . 7 (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
109a1i 11 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}})
118, 10eqtrd 2856 . . . . 5 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}})
127, 11eleq12d 2906 . . . 4 (𝑋 = ∅ → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}}))
133, 12mpbird 260 . . 3 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
1413adantl 485 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
15 neqne 3015 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1615adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
17 fveq2 6643 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
18 fveq2 6643 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
1917, 18oveq12d 7148 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐴𝑖)(,)(𝐵𝑖)) = ((𝐴𝑗)(,)(𝐵𝑗)))
2019cbvixpv 8454 . . . . . . . . 9 X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))
2120eleq2i 2903 . . . . . . . 8 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2221biimpi 219 . . . . . . 7 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2322adantl 485 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
24 ioorrnopn.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2524ad2antrr 725 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ∈ Fin)
2621, 25sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ∈ Fin)
27 simplr 768 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ≠ ∅)
2821, 27sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ≠ ∅)
29 ioorrnopn.a . . . . . . . . 9 (𝜑𝐴:𝑋⟶ℝ)
3029ad2antrr 725 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐴:𝑋⟶ℝ)
3121, 30sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐴:𝑋⟶ℝ)
32 ioorrnopn.b . . . . . . . . 9 (𝜑𝐵:𝑋⟶ℝ)
3332ad2antrr 725 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐵:𝑋⟶ℝ)
3421, 33sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐵:𝑋⟶ℝ)
35 simpr 488 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
3621, 35sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
37 eqid 2821 . . . . . . 7 ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
38 fveq2 6643 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
39 fveq2 6643 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑓𝑗) = (𝑓𝑖))
4038, 39oveq12d 7148 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝐵𝑗) − (𝑓𝑗)) = ((𝐵𝑖) − (𝑓𝑖)))
41 fveq2 6643 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
4239, 41oveq12d 7148 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑓𝑗) − (𝐴𝑗)) = ((𝑓𝑖) − (𝐴𝑖)))
4340, 42breq12d 5052 . . . . . . . . . . 11 (𝑗 = 𝑖 → (((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)) ↔ ((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖))))
4443, 40, 42ifbieq12d 4467 . . . . . . . . . 10 (𝑗 = 𝑖 → if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗))) = if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4544cbvmptv 5142 . . . . . . . . 9 (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4645rneqi 5780 . . . . . . . 8 ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4746infeq1i 8918 . . . . . . 7 inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ) = inf(ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))), ℝ, < )
48 eqid 2821 . . . . . . 7 (𝑓(ball‘(𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < )) = (𝑓(ball‘(𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ))
49 fveq1 6642 . . . . . . . . . . . 12 (𝑎 = 𝑔 → (𝑎𝑘) = (𝑔𝑘))
5049oveq1d 7145 . . . . . . . . . . 11 (𝑎 = 𝑔 → ((𝑎𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑏𝑘)))
5150oveq1d 7145 . . . . . . . . . 10 (𝑎 = 𝑔 → (((𝑎𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑏𝑘))↑2))
5251sumeq2sdv 15040 . . . . . . . . 9 (𝑎 = 𝑔 → Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2))
5352fveq2d 6647 . . . . . . . 8 (𝑎 = 𝑔 → (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)))
54 fveq1 6642 . . . . . . . . . . . 12 (𝑏 = → (𝑏𝑘) = (𝑘))
5554oveq2d 7146 . . . . . . . . . . 11 (𝑏 = → ((𝑔𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑘)))
5655oveq1d 7145 . . . . . . . . . 10 (𝑏 = → (((𝑔𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑘))↑2))
5756sumeq2sdv 15040 . . . . . . . . 9 (𝑏 = → Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2))
5857fveq2d 6647 . . . . . . . 8 (𝑏 = → (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
5953, 58cbvmpov 7223 . . . . . . 7 (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
6026, 28, 31, 34, 36, 37, 47, 48, 59ioorrnopnlem 42769 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6123, 60syldan 594 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6261ralrimiva 3170 . . . 4 ((𝜑𝑋 ≠ ∅) → ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
63 eqid 2821 . . . . . . . 8 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
6463rrxtop 42754 . . . . . . 7 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6524, 64syl 17 . . . . . 6 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6665adantr 484 . . . . 5 ((𝜑𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
67 eltop2 21559 . . . . 5 ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
6866, 67syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
6962, 68mpbird 260 . . 3 ((𝜑𝑋 ≠ ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7016, 69syldan 594 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7114, 70pm2.61dan 812 1 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  ∀wral 3126  ∃wrex 3127   ⊆ wss 3910  ∅c0 4266  ifcif 4440  {csn 4540  {cpr 4542   class class class wbr 5039   ↦ cmpt 5119  ran crn 5529  ⟶wf 6324  ‘cfv 6328  (class class class)co 7130   ∈ cmpo 7132   ↑m cmap 8381  Xcixp 8436  Fincfn 8484  infcinf 8881  ℝcr 10513   < clt 10652   ≤ cle 10653   − cmin 10847  2c2 11670  (,)cioo 12716  ↑cexp 13413  √csqrt 14571  Σcsu 15021  TopOpenctopn 16674  ballcbl 20508  Topctop 21477  ℝ^crrx 23966 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ico 12722  df-fz 12876  df-fzo 13017  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-sum 15022  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-rest 16675  df-topn 16676  df-0g 16694  df-gsum 16695  df-topgen 16696  df-prds 16700  df-pws 16702  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-subg 18255  df-ghm 18335  df-cntz 18426  df-cmn 18887  df-abl 18888  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-rnghom 19446  df-drng 19480  df-field 19481  df-subrg 19509  df-abv 19564  df-staf 19592  df-srng 19593  df-lmod 19612  df-lss 19680  df-lmhm 19770  df-lvec 19851  df-sra 19920  df-rgmod 19921  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-cnfld 20522  df-refld 20725  df-phl 20746  df-dsmm 20852  df-frlm 20867  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-xms 22906  df-ms 22907  df-nm 23168  df-ngp 23169  df-tng 23170  df-nrg 23171  df-nlm 23172  df-clm 23647  df-cph 23752  df-tcph 23753  df-rrx 23968 This theorem is referenced by:  ioorrnopnxrlem  42771
 Copyright terms: Public domain W3C validator