Step | Hyp | Ref
| Expression |
1 | | p0ex 5302 |
. . . . . 6
⊢ {∅}
∈ V |
2 | 1 | prid2 4696 |
. . . . 5
⊢ {∅}
∈ {∅, {∅}} |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝑋 = ∅ → {∅}
∈ {∅, {∅}}) |
4 | | ixpeq1 8654 |
. . . . . 6
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑖 ∈ ∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
5 | | ixp0x 8672 |
. . . . . . 7
⊢ X𝑖 ∈
∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅} |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝑋 = ∅ → X𝑖 ∈
∅ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
7 | 4, 6 | eqtrd 2778 |
. . . . 5
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = {∅}) |
8 | | 2fveq3 6761 |
. . . . . 6
⊢ (𝑋 = ∅ →
(TopOpen‘(ℝ^‘𝑋)) =
(TopOpen‘(ℝ^‘∅))) |
9 | | rrxtopn0b 43727 |
. . . . . . 7
⊢
(TopOpen‘(ℝ^‘∅)) = {∅,
{∅}} |
10 | 9 | a1i 11 |
. . . . . 6
⊢ (𝑋 = ∅ →
(TopOpen‘(ℝ^‘∅)) = {∅,
{∅}}) |
11 | 8, 10 | eqtrd 2778 |
. . . . 5
⊢ (𝑋 = ∅ →
(TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}}) |
12 | 7, 11 | eleq12d 2833 |
. . . 4
⊢ (𝑋 = ∅ → (X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅,
{∅}})) |
13 | 3, 12 | mpbird 256 |
. . 3
⊢ (𝑋 = ∅ → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
14 | 13 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
15 | | neqne 2950 |
. . . 4
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
16 | 15 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
17 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) |
18 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝐵‘𝑖) = (𝐵‘𝑗)) |
19 | 17, 18 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
20 | 19 | cbvixpv 8661 |
. . . . . . . . 9
⊢ X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) = X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗)) |
21 | 20 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑓 ∈ X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ↔ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
22 | 21 | biimpi 215 |
. . . . . . 7
⊢ (𝑓 ∈ X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
23 | 22 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) |
24 | | ioorrnopn.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ Fin) |
25 | 24 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑋 ∈ Fin) |
26 | 21, 25 | sylan2br 594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑋 ∈ Fin) |
27 | | simplr 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑋 ≠ ∅) |
28 | 21, 27 | sylan2br 594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑋 ≠ ∅) |
29 | | ioorrnopn.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
30 | 29 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝐴:𝑋⟶ℝ) |
31 | 21, 30 | sylan2br 594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐴:𝑋⟶ℝ) |
32 | | ioorrnopn.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
33 | 32 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝐵:𝑋⟶ℝ) |
34 | 21, 33 | sylan2br 594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝐵:𝑋⟶ℝ) |
35 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
36 | 21, 35 | sylan2br 594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
37 | | eqid 2738 |
. . . . . . 7
⊢ ran
(𝑖 ∈ 𝑋 ↦ if(((𝐵‘𝑖) − (𝑓‘𝑖)) ≤ ((𝑓‘𝑖) − (𝐴‘𝑖)), ((𝐵‘𝑖) − (𝑓‘𝑖)), ((𝑓‘𝑖) − (𝐴‘𝑖)))) = ran (𝑖 ∈ 𝑋 ↦ if(((𝐵‘𝑖) − (𝑓‘𝑖)) ≤ ((𝑓‘𝑖) − (𝐴‘𝑖)), ((𝐵‘𝑖) − (𝑓‘𝑖)), ((𝑓‘𝑖) − (𝐴‘𝑖)))) |
38 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝐵‘𝑗) = (𝐵‘𝑖)) |
39 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝑓‘𝑗) = (𝑓‘𝑖)) |
40 | 38, 39 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → ((𝐵‘𝑗) − (𝑓‘𝑗)) = ((𝐵‘𝑖) − (𝑓‘𝑖))) |
41 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝐴‘𝑗) = (𝐴‘𝑖)) |
42 | 39, 41 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → ((𝑓‘𝑗) − (𝐴‘𝑗)) = ((𝑓‘𝑖) − (𝐴‘𝑖))) |
43 | 40, 42 | breq12d 5083 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (((𝐵‘𝑗) − (𝑓‘𝑗)) ≤ ((𝑓‘𝑗) − (𝐴‘𝑗)) ↔ ((𝐵‘𝑖) − (𝑓‘𝑖)) ≤ ((𝑓‘𝑖) − (𝐴‘𝑖)))) |
44 | 43, 40, 42 | ifbieq12d 4484 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → if(((𝐵‘𝑗) − (𝑓‘𝑗)) ≤ ((𝑓‘𝑗) − (𝐴‘𝑗)), ((𝐵‘𝑗) − (𝑓‘𝑗)), ((𝑓‘𝑗) − (𝐴‘𝑗))) = if(((𝐵‘𝑖) − (𝑓‘𝑖)) ≤ ((𝑓‘𝑖) − (𝐴‘𝑖)), ((𝐵‘𝑖) − (𝑓‘𝑖)), ((𝑓‘𝑖) − (𝐴‘𝑖)))) |
45 | 44 | cbvmptv 5183 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑋 ↦ if(((𝐵‘𝑗) − (𝑓‘𝑗)) ≤ ((𝑓‘𝑗) − (𝐴‘𝑗)), ((𝐵‘𝑗) − (𝑓‘𝑗)), ((𝑓‘𝑗) − (𝐴‘𝑗)))) = (𝑖 ∈ 𝑋 ↦ if(((𝐵‘𝑖) − (𝑓‘𝑖)) ≤ ((𝑓‘𝑖) − (𝐴‘𝑖)), ((𝐵‘𝑖) − (𝑓‘𝑖)), ((𝑓‘𝑖) − (𝐴‘𝑖)))) |
46 | 45 | rneqi 5835 |
. . . . . . . 8
⊢ ran
(𝑗 ∈ 𝑋 ↦ if(((𝐵‘𝑗) − (𝑓‘𝑗)) ≤ ((𝑓‘𝑗) − (𝐴‘𝑗)), ((𝐵‘𝑗) − (𝑓‘𝑗)), ((𝑓‘𝑗) − (𝐴‘𝑗)))) = ran (𝑖 ∈ 𝑋 ↦ if(((𝐵‘𝑖) − (𝑓‘𝑖)) ≤ ((𝑓‘𝑖) − (𝐴‘𝑖)), ((𝐵‘𝑖) − (𝑓‘𝑖)), ((𝑓‘𝑖) − (𝐴‘𝑖)))) |
47 | 46 | infeq1i 9167 |
. . . . . . 7
⊢ inf(ran
(𝑗 ∈ 𝑋 ↦ if(((𝐵‘𝑗) − (𝑓‘𝑗)) ≤ ((𝑓‘𝑗) − (𝐴‘𝑗)), ((𝐵‘𝑗) − (𝑓‘𝑗)), ((𝑓‘𝑗) − (𝐴‘𝑗)))), ℝ, < ) = inf(ran (𝑖 ∈ 𝑋 ↦ if(((𝐵‘𝑖) − (𝑓‘𝑖)) ≤ ((𝑓‘𝑖) − (𝐴‘𝑖)), ((𝐵‘𝑖) − (𝑓‘𝑖)), ((𝑓‘𝑖) − (𝐴‘𝑖)))), ℝ, < ) |
48 | | eqid 2738 |
. . . . . . 7
⊢ (𝑓(ball‘(𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦
(√‘Σ𝑘
∈ 𝑋 (((𝑎‘𝑘) − (𝑏‘𝑘))↑2))))inf(ran (𝑗 ∈ 𝑋 ↦ if(((𝐵‘𝑗) − (𝑓‘𝑗)) ≤ ((𝑓‘𝑗) − (𝐴‘𝑗)), ((𝐵‘𝑗) − (𝑓‘𝑗)), ((𝑓‘𝑗) − (𝐴‘𝑗)))), ℝ, < )) = (𝑓(ball‘(𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦
(√‘Σ𝑘
∈ 𝑋 (((𝑎‘𝑘) − (𝑏‘𝑘))↑2))))inf(ran (𝑗 ∈ 𝑋 ↦ if(((𝐵‘𝑗) − (𝑓‘𝑗)) ≤ ((𝑓‘𝑗) − (𝐴‘𝑗)), ((𝐵‘𝑗) − (𝑓‘𝑗)), ((𝑓‘𝑗) − (𝐴‘𝑗)))), ℝ, < )) |
49 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑔 → (𝑎‘𝑘) = (𝑔‘𝑘)) |
50 | 49 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑔 → ((𝑎‘𝑘) − (𝑏‘𝑘)) = ((𝑔‘𝑘) − (𝑏‘𝑘))) |
51 | 50 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑔 → (((𝑎‘𝑘) − (𝑏‘𝑘))↑2) = (((𝑔‘𝑘) − (𝑏‘𝑘))↑2)) |
52 | 51 | sumeq2sdv 15344 |
. . . . . . . . 9
⊢ (𝑎 = 𝑔 → Σ𝑘 ∈ 𝑋 (((𝑎‘𝑘) − (𝑏‘𝑘))↑2) = Σ𝑘 ∈ 𝑋 (((𝑔‘𝑘) − (𝑏‘𝑘))↑2)) |
53 | 52 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑎 = 𝑔 → (√‘Σ𝑘 ∈ 𝑋 (((𝑎‘𝑘) − (𝑏‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝑋 (((𝑔‘𝑘) − (𝑏‘𝑘))↑2))) |
54 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑏 = ℎ → (𝑏‘𝑘) = (ℎ‘𝑘)) |
55 | 54 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑏 = ℎ → ((𝑔‘𝑘) − (𝑏‘𝑘)) = ((𝑔‘𝑘) − (ℎ‘𝑘))) |
56 | 55 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑏 = ℎ → (((𝑔‘𝑘) − (𝑏‘𝑘))↑2) = (((𝑔‘𝑘) − (ℎ‘𝑘))↑2)) |
57 | 56 | sumeq2sdv 15344 |
. . . . . . . . 9
⊢ (𝑏 = ℎ → Σ𝑘 ∈ 𝑋 (((𝑔‘𝑘) − (𝑏‘𝑘))↑2) = Σ𝑘 ∈ 𝑋 (((𝑔‘𝑘) − (ℎ‘𝑘))↑2)) |
58 | 57 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑏 = ℎ → (√‘Σ𝑘 ∈ 𝑋 (((𝑔‘𝑘) − (𝑏‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝑋 (((𝑔‘𝑘) − (ℎ‘𝑘))↑2))) |
59 | 53, 58 | cbvmpov 7348 |
. . . . . . 7
⊢ (𝑎 ∈ (ℝ
↑m 𝑋),
𝑏 ∈ (ℝ
↑m 𝑋)
↦ (√‘Σ𝑘 ∈ 𝑋 (((𝑎‘𝑘) − (𝑏‘𝑘))↑2))) = (𝑔 ∈ (ℝ ↑m 𝑋), ℎ ∈ (ℝ ↑m 𝑋) ↦
(√‘Σ𝑘
∈ 𝑋 (((𝑔‘𝑘) − (ℎ‘𝑘))↑2))) |
60 | 26, 28, 31, 34, 36, 37, 47, 48, 59 | ioorrnopnlem 43735 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑗 ∈ 𝑋 ((𝐴‘𝑗)(,)(𝐵‘𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
61 | 23, 60 | syldan 590 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑓 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
62 | 61 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∀𝑓 ∈ X
𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
63 | | eqid 2738 |
. . . . . . . 8
⊢
(TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋)) |
64 | 63 | rrxtop 43720 |
. . . . . . 7
⊢ (𝑋 ∈ Fin →
(TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
65 | 24, 64 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
66 | 65 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(TopOpen‘(ℝ^‘𝑋)) ∈ Top) |
67 | | eltop2 22033 |
. . . . 5
⊢
((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
68 | 66, 67 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓 ∈ X 𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
69 | 62, 68 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
70 | 16, 69 | syldan 590 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
71 | 14, 70 | pm2.61dan 809 |
1
⊢ (𝜑 → X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |