Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopn Structured version   Visualization version   GIF version

Theorem ioorrnopn 44536
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopn.x (𝜑𝑋 ∈ Fin)
ioorrnopn.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopn.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
ioorrnopn (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem ioorrnopn
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 5339 . . . . . 6 {∅} ∈ V
21prid2 4724 . . . . 5 {∅} ∈ {∅, {∅}}
32a1i 11 . . . 4 (𝑋 = ∅ → {∅} ∈ {∅, {∅}})
4 ixpeq1 8846 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)))
5 ixp0x 8864 . . . . . . 7 X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅}
65a1i 11 . . . . . 6 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
74, 6eqtrd 2776 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
8 2fveq3 6847 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅)))
9 rrxtopn0b 44527 . . . . . . 7 (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
109a1i 11 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}})
118, 10eqtrd 2776 . . . . 5 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}})
127, 11eleq12d 2832 . . . 4 (𝑋 = ∅ → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}}))
133, 12mpbird 256 . . 3 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
1413adantl 482 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
15 neqne 2951 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1615adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
17 fveq2 6842 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
18 fveq2 6842 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
1917, 18oveq12d 7375 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐴𝑖)(,)(𝐵𝑖)) = ((𝐴𝑗)(,)(𝐵𝑗)))
2019cbvixpv 8853 . . . . . . . . 9 X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))
2120eleq2i 2829 . . . . . . . 8 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2221biimpi 215 . . . . . . 7 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2322adantl 482 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
24 ioorrnopn.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2524ad2antrr 724 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ∈ Fin)
2621, 25sylan2br 595 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ∈ Fin)
27 simplr 767 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ≠ ∅)
2821, 27sylan2br 595 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ≠ ∅)
29 ioorrnopn.a . . . . . . . . 9 (𝜑𝐴:𝑋⟶ℝ)
3029ad2antrr 724 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐴:𝑋⟶ℝ)
3121, 30sylan2br 595 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐴:𝑋⟶ℝ)
32 ioorrnopn.b . . . . . . . . 9 (𝜑𝐵:𝑋⟶ℝ)
3332ad2antrr 724 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐵:𝑋⟶ℝ)
3421, 33sylan2br 595 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐵:𝑋⟶ℝ)
35 simpr 485 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
3621, 35sylan2br 595 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
37 eqid 2736 . . . . . . 7 ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
38 fveq2 6842 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
39 fveq2 6842 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑓𝑗) = (𝑓𝑖))
4038, 39oveq12d 7375 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝐵𝑗) − (𝑓𝑗)) = ((𝐵𝑖) − (𝑓𝑖)))
41 fveq2 6842 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
4239, 41oveq12d 7375 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑓𝑗) − (𝐴𝑗)) = ((𝑓𝑖) − (𝐴𝑖)))
4340, 42breq12d 5118 . . . . . . . . . . 11 (𝑗 = 𝑖 → (((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)) ↔ ((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖))))
4443, 40, 42ifbieq12d 4514 . . . . . . . . . 10 (𝑗 = 𝑖 → if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗))) = if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4544cbvmptv 5218 . . . . . . . . 9 (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4645rneqi 5892 . . . . . . . 8 ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4746infeq1i 9414 . . . . . . 7 inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ) = inf(ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))), ℝ, < )
48 eqid 2736 . . . . . . 7 (𝑓(ball‘(𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < )) = (𝑓(ball‘(𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ))
49 fveq1 6841 . . . . . . . . . . . 12 (𝑎 = 𝑔 → (𝑎𝑘) = (𝑔𝑘))
5049oveq1d 7372 . . . . . . . . . . 11 (𝑎 = 𝑔 → ((𝑎𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑏𝑘)))
5150oveq1d 7372 . . . . . . . . . 10 (𝑎 = 𝑔 → (((𝑎𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑏𝑘))↑2))
5251sumeq2sdv 15589 . . . . . . . . 9 (𝑎 = 𝑔 → Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2))
5352fveq2d 6846 . . . . . . . 8 (𝑎 = 𝑔 → (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)))
54 fveq1 6841 . . . . . . . . . . . 12 (𝑏 = → (𝑏𝑘) = (𝑘))
5554oveq2d 7373 . . . . . . . . . . 11 (𝑏 = → ((𝑔𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑘)))
5655oveq1d 7372 . . . . . . . . . 10 (𝑏 = → (((𝑔𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑘))↑2))
5756sumeq2sdv 15589 . . . . . . . . 9 (𝑏 = → Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2))
5857fveq2d 6846 . . . . . . . 8 (𝑏 = → (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
5953, 58cbvmpov 7452 . . . . . . 7 (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
6026, 28, 31, 34, 36, 37, 47, 48, 59ioorrnopnlem 44535 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6123, 60syldan 591 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6261ralrimiva 3143 . . . 4 ((𝜑𝑋 ≠ ∅) → ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
63 eqid 2736 . . . . . . . 8 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
6463rrxtop 44520 . . . . . . 7 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6524, 64syl 17 . . . . . 6 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6665adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
67 eltop2 22325 . . . . 5 ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
6866, 67syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
6962, 68mpbird 256 . . 3 ((𝜑𝑋 ≠ ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7016, 69syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7114, 70pm2.61dan 811 1 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910  c0 4282  ifcif 4486  {csn 4586  {cpr 4588   class class class wbr 5105  cmpt 5188  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Xcixp 8835  Fincfn 8883  infcinf 9377  cr 11050   < clt 11189  cle 11190  cmin 11385  2c2 12208  (,)cioo 13264  cexp 13967  csqrt 15118  Σcsu 15570  TopOpenctopn 17303  ballcbl 20783  Topctop 22242  ℝ^crrx 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-abv 20276  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-refld 21009  df-phl 21030  df-dsmm 21138  df-frlm 21153  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-tng 23940  df-nrg 23941  df-nlm 23942  df-clm 24426  df-cph 24532  df-tcph 24533  df-rrx 24749
This theorem is referenced by:  ioorrnopnxrlem  44537
  Copyright terms: Public domain W3C validator