Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopn Structured version   Visualization version   GIF version

Theorem ioorrnopn 42947
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopn.x (𝜑𝑋 ∈ Fin)
ioorrnopn.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopn.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
ioorrnopn (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem ioorrnopn
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 5250 . . . . . 6 {∅} ∈ V
21prid2 4659 . . . . 5 {∅} ∈ {∅, {∅}}
32a1i 11 . . . 4 (𝑋 = ∅ → {∅} ∈ {∅, {∅}})
4 ixpeq1 8455 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)))
5 ixp0x 8473 . . . . . . 7 X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅}
65a1i 11 . . . . . 6 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
74, 6eqtrd 2833 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
8 2fveq3 6650 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅)))
9 rrxtopn0b 42938 . . . . . . 7 (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
109a1i 11 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}})
118, 10eqtrd 2833 . . . . 5 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}})
127, 11eleq12d 2884 . . . 4 (𝑋 = ∅ → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}}))
133, 12mpbird 260 . . 3 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
1413adantl 485 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
15 neqne 2995 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1615adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
17 fveq2 6645 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
18 fveq2 6645 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
1917, 18oveq12d 7153 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐴𝑖)(,)(𝐵𝑖)) = ((𝐴𝑗)(,)(𝐵𝑗)))
2019cbvixpv 8462 . . . . . . . . 9 X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))
2120eleq2i 2881 . . . . . . . 8 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2221biimpi 219 . . . . . . 7 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2322adantl 485 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
24 ioorrnopn.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2524ad2antrr 725 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ∈ Fin)
2621, 25sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ∈ Fin)
27 simplr 768 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ≠ ∅)
2821, 27sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ≠ ∅)
29 ioorrnopn.a . . . . . . . . 9 (𝜑𝐴:𝑋⟶ℝ)
3029ad2antrr 725 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐴:𝑋⟶ℝ)
3121, 30sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐴:𝑋⟶ℝ)
32 ioorrnopn.b . . . . . . . . 9 (𝜑𝐵:𝑋⟶ℝ)
3332ad2antrr 725 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐵:𝑋⟶ℝ)
3421, 33sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐵:𝑋⟶ℝ)
35 simpr 488 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
3621, 35sylan2br 597 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
37 eqid 2798 . . . . . . 7 ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
38 fveq2 6645 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
39 fveq2 6645 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑓𝑗) = (𝑓𝑖))
4038, 39oveq12d 7153 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝐵𝑗) − (𝑓𝑗)) = ((𝐵𝑖) − (𝑓𝑖)))
41 fveq2 6645 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
4239, 41oveq12d 7153 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑓𝑗) − (𝐴𝑗)) = ((𝑓𝑖) − (𝐴𝑖)))
4340, 42breq12d 5043 . . . . . . . . . . 11 (𝑗 = 𝑖 → (((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)) ↔ ((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖))))
4443, 40, 42ifbieq12d 4452 . . . . . . . . . 10 (𝑗 = 𝑖 → if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗))) = if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4544cbvmptv 5133 . . . . . . . . 9 (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4645rneqi 5771 . . . . . . . 8 ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4746infeq1i 8926 . . . . . . 7 inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ) = inf(ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))), ℝ, < )
48 eqid 2798 . . . . . . 7 (𝑓(ball‘(𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < )) = (𝑓(ball‘(𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ))
49 fveq1 6644 . . . . . . . . . . . 12 (𝑎 = 𝑔 → (𝑎𝑘) = (𝑔𝑘))
5049oveq1d 7150 . . . . . . . . . . 11 (𝑎 = 𝑔 → ((𝑎𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑏𝑘)))
5150oveq1d 7150 . . . . . . . . . 10 (𝑎 = 𝑔 → (((𝑎𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑏𝑘))↑2))
5251sumeq2sdv 15053 . . . . . . . . 9 (𝑎 = 𝑔 → Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2))
5352fveq2d 6649 . . . . . . . 8 (𝑎 = 𝑔 → (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)))
54 fveq1 6644 . . . . . . . . . . . 12 (𝑏 = → (𝑏𝑘) = (𝑘))
5554oveq2d 7151 . . . . . . . . . . 11 (𝑏 = → ((𝑔𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑘)))
5655oveq1d 7150 . . . . . . . . . 10 (𝑏 = → (((𝑔𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑘))↑2))
5756sumeq2sdv 15053 . . . . . . . . 9 (𝑏 = → Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2))
5857fveq2d 6649 . . . . . . . 8 (𝑏 = → (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
5953, 58cbvmpov 7228 . . . . . . 7 (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
6026, 28, 31, 34, 36, 37, 47, 48, 59ioorrnopnlem 42946 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6123, 60syldan 594 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6261ralrimiva 3149 . . . 4 ((𝜑𝑋 ≠ ∅) → ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
63 eqid 2798 . . . . . . . 8 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
6463rrxtop 42931 . . . . . . 7 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6524, 64syl 17 . . . . . 6 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6665adantr 484 . . . . 5 ((𝜑𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
67 eltop2 21580 . . . . 5 ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
6866, 67syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
6962, 68mpbird 260 . . 3 ((𝜑𝑋 ≠ ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7016, 69syldan 594 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7114, 70pm2.61dan 812 1 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  wss 3881  c0 4243  ifcif 4425  {csn 4525  {cpr 4527   class class class wbr 5030  cmpt 5110  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Xcixp 8444  Fincfn 8492  infcinf 8889  cr 10525   < clt 10664  cle 10665  cmin 10859  2c2 11680  (,)cioo 12726  cexp 13425  csqrt 14584  Σcsu 15034  TopOpenctopn 16687  ballcbl 20078  Topctop 21498  ℝ^crrx 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-abv 19581  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-refld 20294  df-phl 20315  df-dsmm 20421  df-frlm 20436  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-tng 23191  df-nrg 23192  df-nlm 23193  df-clm 23668  df-cph 23773  df-tcph 23774  df-rrx 23989
This theorem is referenced by:  ioorrnopnxrlem  42948
  Copyright terms: Public domain W3C validator