![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hspval | Structured version Visualization version GIF version |
Description: The value of the half-space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hspval.h | ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑖 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))) |
hspval.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hspval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
hspval.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
Ref | Expression |
---|---|
hspval | ⊢ (𝜑 → (𝐼(𝐻‘𝑋)𝑌) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hspval.h | . . 3 ⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑖 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
3 | eqidd 2729 | . . . 4 ⊢ (𝑥 = 𝑋 → ℝ = ℝ) | |
4 | ixpeq1 8933 | . . . 4 ⊢ (𝑥 = 𝑋 → X𝑘 ∈ 𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) | |
5 | 2, 3, 4 | mpoeq123dv 7501 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑖 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖 ∈ 𝑋, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))) |
6 | hspval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | reex 11237 | . . . . 5 ⊢ ℝ ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ V) |
9 | eqid 2728 | . . . . 5 ⊢ (𝑖 ∈ 𝑋, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖 ∈ 𝑋, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) | |
10 | 9 | mpoexg 8087 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ ℝ ∈ V) → (𝑖 ∈ 𝑋, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) ∈ V) |
11 | 6, 8, 10 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑖 ∈ 𝑋, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) ∈ V) |
12 | 1, 5, 6, 11 | fvmptd3 7033 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) = (𝑖 ∈ 𝑋, 𝑦 ∈ ℝ ↦ X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))) |
13 | simpl 481 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ 𝑦 = 𝑌) → 𝑖 = 𝐼) | |
14 | 13 | eqeq2d 2739 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑦 = 𝑌) → (𝑘 = 𝑖 ↔ 𝑘 = 𝐼)) |
15 | simpr 483 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
16 | 15 | oveq2d 7442 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑦 = 𝑌) → (-∞(,)𝑦) = (-∞(,)𝑌)) |
17 | 14, 16 | ifbieq1d 4556 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑦 = 𝑌) → if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ)) |
18 | 17 | ixpeq2dv 8938 | . . 3 ⊢ ((𝑖 = 𝐼 ∧ 𝑦 = 𝑌) → X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ)) |
19 | 18 | adantl 480 | . 2 ⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑦 = 𝑌)) → X𝑘 ∈ 𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ)) |
20 | hspval.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
21 | hspval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
22 | ovex 7459 | . . . . . 6 ⊢ (-∞(,)𝑌) ∈ V | |
23 | 22, 7 | ifcli 4579 | . . . . 5 ⊢ if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V |
24 | 23 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V) |
25 | 24 | ralrimiva 3143 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V) |
26 | ixpexg 8947 | . . 3 ⊢ (∀𝑘 ∈ 𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V → X𝑘 ∈ 𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V) | |
27 | 25, 26 | syl 17 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V) |
28 | 12, 19, 20, 21, 27 | ovmpod 7579 | 1 ⊢ (𝜑 → (𝐼(𝐻‘𝑋)𝑌) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 Vcvv 3473 ifcif 4532 ↦ cmpt 5235 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 Xcixp 8922 Fincfn 8970 ℝcr 11145 -∞cmnf 11284 (,)cioo 13364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-ixp 8923 |
This theorem is referenced by: hspdifhsp 46033 hspmbllem2 46044 hspmbl 46046 |
Copyright terms: Public domain | W3C validator |