Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspval Structured version   Visualization version   GIF version

Theorem hspval 43248
Description: The value of the half-space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspval.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
hspval.x (𝜑𝑋 ∈ Fin)
hspval.i (𝜑𝐼𝑋)
hspval.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hspval (𝜑 → (𝐼(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
Distinct variable groups:   𝑖,𝐼,𝑘,𝑦   𝑖,𝑋,𝑘,𝑥,𝑦   𝑖,𝑌,𝑘,𝑦   𝜑,𝑖,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,𝑖,𝑘)   𝐼(𝑥)   𝑌(𝑥)

Proof of Theorem hspval
StepHypRef Expression
1 hspval.h . . 3 𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
2 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
3 eqidd 2799 . . . 4 (𝑥 = 𝑋 → ℝ = ℝ)
4 ixpeq1 8455 . . . 4 (𝑥 = 𝑋X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))
52, 3, 4mpoeq123dv 7208 . . 3 (𝑥 = 𝑋 → (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
6 hspval.x . . 3 (𝜑𝑋 ∈ Fin)
7 reex 10617 . . . . 5 ℝ ∈ V
87a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
9 eqid 2798 . . . . 5 (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))
109mpoexg 7757 . . . 4 ((𝑋 ∈ Fin ∧ ℝ ∈ V) → (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) ∈ V)
116, 8, 10syl2anc 587 . . 3 (𝜑 → (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) ∈ V)
121, 5, 6, 11fvmptd3 6768 . 2 (𝜑 → (𝐻𝑋) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
13 simpl 486 . . . . . 6 ((𝑖 = 𝐼𝑦 = 𝑌) → 𝑖 = 𝐼)
1413eqeq2d 2809 . . . . 5 ((𝑖 = 𝐼𝑦 = 𝑌) → (𝑘 = 𝑖𝑘 = 𝐼))
15 simpr 488 . . . . . 6 ((𝑖 = 𝐼𝑦 = 𝑌) → 𝑦 = 𝑌)
1615oveq2d 7151 . . . . 5 ((𝑖 = 𝐼𝑦 = 𝑌) → (-∞(,)𝑦) = (-∞(,)𝑌))
1714, 16ifbieq1d 4448 . . . 4 ((𝑖 = 𝐼𝑦 = 𝑌) → if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
1817ixpeq2dv 8460 . . 3 ((𝑖 = 𝐼𝑦 = 𝑌) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
1918adantl 485 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑦 = 𝑌)) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
20 hspval.i . 2 (𝜑𝐼𝑋)
21 hspval.y . 2 (𝜑𝑌 ∈ ℝ)
22 ovex 7168 . . . . . 6 (-∞(,)𝑌) ∈ V
2322, 7ifcli 4471 . . . . 5 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V
2423a1i 11 . . . 4 ((𝜑𝑘𝑋) → if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
2524ralrimiva 3149 . . 3 (𝜑 → ∀𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
26 ixpexg 8469 . . 3 (∀𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V → X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
2725, 26syl 17 . 2 (𝜑X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
2812, 19, 20, 21, 27ovmpod 7281 1 (𝜑 → (𝐼(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  ifcif 4425  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  Xcixp 8444  Fincfn 8492  cr 10525  -∞cmnf 10662  (,)cioo 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-ixp 8445
This theorem is referenced by:  hspdifhsp  43255  hspmbllem2  43266  hspmbl  43268
  Copyright terms: Public domain W3C validator