Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem1 Structured version   Visualization version   GIF version

Theorem k0004lem1 41739
Description: Application of ssin 4170 to range of a function. (Contributed by RP, 1-Apr-2021.)
Assertion
Ref Expression
k0004lem1 (𝐷 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐷))

Proof of Theorem k0004lem1
StepHypRef Expression
1 fnima 6561 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
21sseq1d 3957 . . . . . 6 (𝐹 Fn 𝐴 → ((𝐹𝐴) ⊆ 𝐶 ↔ ran 𝐹𝐶))
32anbi2d 629 . . . . 5 (𝐹 Fn 𝐴 → ((ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (ran 𝐹𝐵 ∧ ran 𝐹𝐶)))
4 ssin 4170 . . . . 5 ((ran 𝐹𝐵 ∧ ran 𝐹𝐶) ↔ ran 𝐹 ⊆ (𝐵𝐶))
53, 4bitrdi 287 . . . 4 (𝐹 Fn 𝐴 → ((ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵𝐶)))
65pm5.32i 575 . . 3 ((𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
7 df-f 6436 . . . . 5 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
87anbi1i 624 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹𝐴) ⊆ 𝐶))
9 anass 469 . . . 4 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)))
108, 9bitri 274 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)))
11 df-f 6436 . . 3 (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
126, 10, 113bitr4i 303 . 2 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶(𝐵𝐶))
13 feq3 6581 . 2 (𝐷 = (𝐵𝐶) → (𝐹:𝐴𝐷𝐹:𝐴⟶(𝐵𝐶)))
1412, 13bitr4id 290 1 (𝐷 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  cin 3891  wss 3892  ran crn 5591  cima 5593   Fn wfn 6427  wf 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-cnv 5598  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-fun 6434  df-fn 6435  df-f 6436
This theorem is referenced by:  k0004lem2  41740
  Copyright terms: Public domain W3C validator