Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem1 Structured version   Visualization version   GIF version

Theorem k0004lem1 40850
Description: Application of ssin 4157 to range of a function. (Contributed by RP, 1-Apr-2021.)
Assertion
Ref Expression
k0004lem1 (𝐷 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐷))

Proof of Theorem k0004lem1
StepHypRef Expression
1 fnima 6450 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
21sseq1d 3946 . . . . . 6 (𝐹 Fn 𝐴 → ((𝐹𝐴) ⊆ 𝐶 ↔ ran 𝐹𝐶))
32anbi2d 631 . . . . 5 (𝐹 Fn 𝐴 → ((ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (ran 𝐹𝐵 ∧ ran 𝐹𝐶)))
4 ssin 4157 . . . . 5 ((ran 𝐹𝐵 ∧ ran 𝐹𝐶) ↔ ran 𝐹 ⊆ (𝐵𝐶))
53, 4syl6bb 290 . . . 4 (𝐹 Fn 𝐴 → ((ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵𝐶)))
65pm5.32i 578 . . 3 ((𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
7 df-f 6328 . . . . 5 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
87anbi1i 626 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹𝐴) ⊆ 𝐶))
9 anass 472 . . . 4 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)))
108, 9bitri 278 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)))
11 df-f 6328 . . 3 (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
126, 10, 113bitr4i 306 . 2 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶(𝐵𝐶))
13 feq3 6470 . 2 (𝐷 = (𝐵𝐶) → (𝐹:𝐴𝐷𝐹:𝐴⟶(𝐵𝐶)))
1412, 13bitr4id 293 1 (𝐷 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  cin 3880  wss 3881  ran crn 5520  cima 5522   Fn wfn 6319  wf 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-fun 6326  df-fn 6327  df-f 6328
This theorem is referenced by:  k0004lem2  40851
  Copyright terms: Public domain W3C validator