| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004lem1 | Structured version Visualization version GIF version | ||
| Description: Application of ssin 4202 to range of a function. (Contributed by RP, 1-Apr-2021.) |
| Ref | Expression |
|---|---|
| k0004lem1 | ⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnima 6648 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
| 2 | 1 | sseq1d 3978 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝐹 “ 𝐴) ⊆ 𝐶 ↔ ran 𝐹 ⊆ 𝐶)) |
| 3 | 2 | anbi2d 630 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
| 4 | ssin 4202 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | bitrdi 287 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) |
| 6 | 5 | pm5.32i 574 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) |
| 7 | df-f 6515 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 8 | 7 | anbi1i 624 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ⊆ 𝐶)) |
| 9 | anass 468 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) | |
| 10 | 8, 9 | bitri 275 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) |
| 11 | df-f 6515 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) | |
| 12 | 6, 10, 11 | 3bitr4i 303 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶(𝐵 ∩ 𝐶)) |
| 13 | feq3 6668 | . 2 ⊢ (𝐷 = (𝐵 ∩ 𝐶) → (𝐹:𝐴⟶𝐷 ↔ 𝐹:𝐴⟶(𝐵 ∩ 𝐶))) | |
| 14 | 12, 13 | bitr4id 290 | 1 ⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 ran crn 5639 “ cima 5641 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: k0004lem2 44137 |
| Copyright terms: Public domain | W3C validator |