Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004lem1 | Structured version Visualization version GIF version |
Description: Application of ssin 4170 to range of a function. (Contributed by RP, 1-Apr-2021.) |
Ref | Expression |
---|---|
k0004lem1 | ⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnima 6561 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
2 | 1 | sseq1d 3957 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝐹 “ 𝐴) ⊆ 𝐶 ↔ ran 𝐹 ⊆ 𝐶)) |
3 | 2 | anbi2d 629 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
4 | ssin 4170 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | bitrdi 287 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) |
6 | 5 | pm5.32i 575 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) |
7 | df-f 6436 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
8 | 7 | anbi1i 624 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ⊆ 𝐶)) |
9 | anass 469 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) | |
10 | 8, 9 | bitri 274 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) |
11 | df-f 6436 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) | |
12 | 6, 10, 11 | 3bitr4i 303 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶(𝐵 ∩ 𝐶)) |
13 | feq3 6581 | . 2 ⊢ (𝐷 = (𝐵 ∩ 𝐶) → (𝐹:𝐴⟶𝐷 ↔ 𝐹:𝐴⟶(𝐵 ∩ 𝐶))) | |
14 | 12, 13 | bitr4id 290 | 1 ⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∩ cin 3891 ⊆ wss 3892 ran crn 5591 “ cima 5593 Fn wfn 6427 ⟶wf 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 df-fn 6435 df-f 6436 |
This theorem is referenced by: k0004lem2 41740 |
Copyright terms: Public domain | W3C validator |