![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004lem1 | Structured version Visualization version GIF version |
Description: Application of ssin 4247 to range of a function. (Contributed by RP, 1-Apr-2021.) |
Ref | Expression |
---|---|
k0004lem1 | ⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnima 6699 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
2 | 1 | sseq1d 4027 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝐹 “ 𝐴) ⊆ 𝐶 ↔ ran 𝐹 ⊆ 𝐶)) |
3 | 2 | anbi2d 630 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
4 | ssin 4247 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | bitrdi 287 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) |
6 | 5 | pm5.32i 574 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) |
7 | df-f 6567 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
8 | 7 | anbi1i 624 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ⊆ 𝐶)) |
9 | anass 468 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) | |
10 | 8, 9 | bitri 275 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) |
11 | df-f 6567 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) | |
12 | 6, 10, 11 | 3bitr4i 303 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶(𝐵 ∩ 𝐶)) |
13 | feq3 6719 | . 2 ⊢ (𝐷 = (𝐵 ∩ 𝐶) → (𝐹:𝐴⟶𝐷 ↔ 𝐹:𝐴⟶(𝐵 ∩ 𝐶))) | |
14 | 12, 13 | bitr4id 290 | 1 ⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∩ cin 3962 ⊆ wss 3963 ran crn 5690 “ cima 5692 Fn wfn 6558 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: k0004lem2 44138 |
Copyright terms: Public domain | W3C validator |