Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem1 Structured version   Visualization version   GIF version

Theorem k0004lem1 42888
Description: Application of ssin 4230 to range of a function. (Contributed by RP, 1-Apr-2021.)
Assertion
Ref Expression
k0004lem1 (𝐷 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐷))

Proof of Theorem k0004lem1
StepHypRef Expression
1 fnima 6680 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
21sseq1d 4013 . . . . . 6 (𝐹 Fn 𝐴 → ((𝐹𝐴) ⊆ 𝐶 ↔ ran 𝐹𝐶))
32anbi2d 629 . . . . 5 (𝐹 Fn 𝐴 → ((ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (ran 𝐹𝐵 ∧ ran 𝐹𝐶)))
4 ssin 4230 . . . . 5 ((ran 𝐹𝐵 ∧ ran 𝐹𝐶) ↔ ran 𝐹 ⊆ (𝐵𝐶))
53, 4bitrdi 286 . . . 4 (𝐹 Fn 𝐴 → ((ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵𝐶)))
65pm5.32i 575 . . 3 ((𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
7 df-f 6547 . . . . 5 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
87anbi1i 624 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹𝐴) ⊆ 𝐶))
9 anass 469 . . . 4 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)))
108, 9bitri 274 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)))
11 df-f 6547 . . 3 (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
126, 10, 113bitr4i 302 . 2 ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶(𝐵𝐶))
13 feq3 6700 . 2 (𝐷 = (𝐵𝐶) → (𝐹:𝐴𝐷𝐹:𝐴⟶(𝐵𝐶)))
1412, 13bitr4id 289 1 (𝐷 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  cin 3947  wss 3948  ran crn 5677  cima 5679   Fn wfn 6538  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by:  k0004lem2  42889
  Copyright terms: Public domain W3C validator