Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem2 Structured version   Visualization version   GIF version

Theorem k0004lem2 39895
Description: A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.)
Assertion
Ref Expression
k0004lem2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵𝑚 𝐴) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶𝑚 𝐴)))

Proof of Theorem k0004lem2
StepHypRef Expression
1 simp3 1119 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶𝐵)
2 sseqin2 4074 . . . . 5 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐶)
32biimpi 208 . . . 4 (𝐶𝐵 → (𝐵𝐶) = 𝐶)
43eqcomd 2779 . . 3 (𝐶𝐵𝐶 = (𝐵𝐶))
5 k0004lem1 39894 . . 3 (𝐶 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐶))
61, 4, 53syl 18 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐶))
7 simp2 1118 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐵𝑉)
8 simp1 1117 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐴𝑈)
97, 8elmapd 8219 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ (𝐵𝑚 𝐴) ↔ 𝐹:𝐴𝐵))
109anbi1d 621 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵𝑚 𝐴) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)))
117, 1ssexd 5081 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶 ∈ V)
1211, 8elmapd 8219 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ (𝐶𝑚 𝐴) ↔ 𝐹:𝐴𝐶))
136, 10, 123bitr4d 303 1 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵𝑚 𝐴) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶𝑚 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  Vcvv 3410  cin 3823  wss 3824  cima 5407  wf 6182  (class class class)co 6975  𝑚 cmap 8205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rex 3089  df-rab 3092  df-v 3412  df-sbc 3677  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-opab 4989  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-fv 6194  df-ov 6978  df-oprab 6979  df-mpo 6980  df-map 8207
This theorem is referenced by:  k0004lem3  39896
  Copyright terms: Public domain W3C validator