| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004lem2 | Structured version Visualization version GIF version | ||
| Description: A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
| Ref | Expression |
|---|---|
| k0004lem2 | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ⊆ 𝐵) | |
| 2 | sseqin2 4186 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) = 𝐶) |
| 4 | 3 | eqcomd 2735 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → 𝐶 = (𝐵 ∩ 𝐶)) |
| 5 | k0004lem1 44136 | . . 3 ⊢ (𝐶 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐶)) | |
| 6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐶)) |
| 7 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐵 ∈ 𝑉) | |
| 8 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ∈ 𝑈) | |
| 9 | 7, 8 | elmapd 8813 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
| 10 | 9 | anbi1d 631 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) |
| 11 | 7, 1 | ssexd 5279 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ∈ V) |
| 12 | 11, 8 | elmapd 8813 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → (𝐹 ∈ (𝐶 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐶)) |
| 13 | 6, 10, 12 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 “ cima 5641 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: k0004lem3 44138 |
| Copyright terms: Public domain | W3C validator |