Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem2 Structured version   Visualization version   GIF version

Theorem k0004lem2 43725
Description: A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.)
Assertion
Ref Expression
k0004lem2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m 𝐴) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶m 𝐴)))

Proof of Theorem k0004lem2
StepHypRef Expression
1 simp3 1135 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶𝐵)
2 sseqin2 4213 . . . . 5 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐶)
32biimpi 215 . . . 4 (𝐶𝐵 → (𝐵𝐶) = 𝐶)
43eqcomd 2731 . . 3 (𝐶𝐵𝐶 = (𝐵𝐶))
5 k0004lem1 43724 . . 3 (𝐶 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐶))
61, 4, 53syl 18 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐶))
7 simp2 1134 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐵𝑉)
8 simp1 1133 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐴𝑈)
97, 8elmapd 8859 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
109anbi1d 629 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m 𝐴) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶)))
117, 1ssexd 5325 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶 ∈ V)
1211, 8elmapd 8859 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ (𝐶m 𝐴) ↔ 𝐹:𝐴𝐶))
136, 10, 123bitr4d 310 1 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m 𝐴) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶m 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  cin 3943  wss 3944  cima 5681  wf 6545  (class class class)co 7419  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847
This theorem is referenced by:  k0004lem3  43726
  Copyright terms: Public domain W3C validator