| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004lem2 | Structured version Visualization version GIF version | ||
| Description: A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
| Ref | Expression |
|---|---|
| k0004lem2 | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ⊆ 𝐵) | |
| 2 | sseqin2 4205 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) = 𝐶) |
| 4 | 3 | eqcomd 2740 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → 𝐶 = (𝐵 ∩ 𝐶)) |
| 5 | k0004lem1 44105 | . . 3 ⊢ (𝐶 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐶)) | |
| 6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐶)) |
| 7 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐵 ∈ 𝑉) | |
| 8 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ∈ 𝑈) | |
| 9 | 7, 8 | elmapd 8863 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
| 10 | 9 | anbi1d 631 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) |
| 11 | 7, 1 | ssexd 5306 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ∈ V) |
| 12 | 11, 8 | elmapd 8863 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → (𝐹 ∈ (𝐶 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐶)) |
| 13 | 6, 10, 12 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∩ cin 3932 ⊆ wss 3933 “ cima 5670 ⟶wf 6538 (class class class)co 7414 ↑m cmap 8849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8851 |
| This theorem is referenced by: k0004lem3 44107 |
| Copyright terms: Public domain | W3C validator |