Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispacess2 Structured version   Visualization version   GIF version

Theorem gneispacess2 44145
Description: All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispacess2 (((𝐹𝐴𝑃 ∈ dom 𝐹) ∧ (𝑁 ∈ (𝐹𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆)) → 𝑆 ∈ (𝐹𝑃))
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓,𝑠   𝑃,𝑝,𝑛   𝑛,𝑁   𝑆,𝑠   𝑛,𝑠,𝑁   𝑠,𝑝,𝑃
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑃(𝑓)   𝑆(𝑓,𝑛,𝑝)   𝑁(𝑓,𝑝)

Proof of Theorem gneispacess2
StepHypRef Expression
1 gneispace.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispacess 44144 . . . 4 (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))
3 fveq2 6881 . . . . . 6 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
43eleq2d 2821 . . . . . . . 8 (𝑝 = 𝑃 → (𝑠 ∈ (𝐹𝑝) ↔ 𝑠 ∈ (𝐹𝑃)))
54imbi2d 340 . . . . . . 7 (𝑝 = 𝑃 → ((𝑛𝑠𝑠 ∈ (𝐹𝑝)) ↔ (𝑛𝑠𝑠 ∈ (𝐹𝑃))))
65ralbidv 3164 . . . . . 6 (𝑝 = 𝑃 → (∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)) ↔ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑃))))
73, 6raleqbidv 3329 . . . . 5 (𝑝 = 𝑃 → (∀𝑛 ∈ (𝐹𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)) ↔ ∀𝑛 ∈ (𝐹𝑃)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑃))))
87rspccv 3603 . . . 4 (∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)) → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑃)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑃))))
92, 8syl 17 . . 3 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑃)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑃))))
10 sseq1 3989 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛𝑠𝑁𝑠))
1110imbi1d 341 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛𝑠𝑠 ∈ (𝐹𝑃)) ↔ (𝑁𝑠𝑠 ∈ (𝐹𝑃))))
1211ralbidv 3164 . . . . . 6 (𝑛 = 𝑁 → (∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑃)) ↔ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑁𝑠𝑠 ∈ (𝐹𝑃))))
1312rspccv 3603 . . . . 5 (∀𝑛 ∈ (𝐹𝑃)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑃)) → (𝑁 ∈ (𝐹𝑃) → ∀𝑠 ∈ 𝒫 dom 𝐹(𝑁𝑠𝑠 ∈ (𝐹𝑃))))
14 sseq2 3990 . . . . . . 7 (𝑠 = 𝑆 → (𝑁𝑠𝑁𝑆))
15 eleq1 2823 . . . . . . 7 (𝑠 = 𝑆 → (𝑠 ∈ (𝐹𝑃) ↔ 𝑆 ∈ (𝐹𝑃)))
1614, 15imbi12d 344 . . . . . 6 (𝑠 = 𝑆 → ((𝑁𝑠𝑠 ∈ (𝐹𝑃)) ↔ (𝑁𝑆𝑆 ∈ (𝐹𝑃))))
1716rspccv 3603 . . . . 5 (∀𝑠 ∈ 𝒫 dom 𝐹(𝑁𝑠𝑠 ∈ (𝐹𝑃)) → (𝑆 ∈ 𝒫 dom 𝐹 → (𝑁𝑆𝑆 ∈ (𝐹𝑃))))
1813, 17syl6 35 . . . 4 (∀𝑛 ∈ (𝐹𝑃)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑃)) → (𝑁 ∈ (𝐹𝑃) → (𝑆 ∈ 𝒫 dom 𝐹 → (𝑁𝑆𝑆 ∈ (𝐹𝑃)))))
19183impd 1349 . . 3 (∀𝑛 ∈ (𝐹𝑃)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑃)) → ((𝑁 ∈ (𝐹𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆) → 𝑆 ∈ (𝐹𝑃)))
209, 19syl6 35 . 2 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → ((𝑁 ∈ (𝐹𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆) → 𝑆 ∈ (𝐹𝑃))))
2120imp31 417 1 (((𝐹𝐴𝑃 ∈ dom 𝐹) ∧ (𝑁 ∈ (𝐹𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆)) → 𝑆 ∈ (𝐹𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  cdif 3928  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606  dom cdm 5659  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator