![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltpiord | Structured version Visualization version GIF version |
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 10944 | . . 3 ⊢ <N = ( E ∩ (N × N)) | |
2 | 1 | breqi 5172 | . 2 ⊢ (𝐴 <N 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵) |
3 | brinxp 5778 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵)) | |
4 | epelg 5600 | . . . 4 ⊢ (𝐵 ∈ N → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
6 | 3, 5 | bitr3d 281 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴( E ∩ (N × N))𝐵 ↔ 𝐴 ∈ 𝐵)) |
7 | 2, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 class class class wbr 5166 E cep 5598 × cxp 5698 Ncnpi 10913 <N clti 10916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-lti 10944 |
This theorem is referenced by: ltexpi 10971 ltapi 10972 ltmpi 10973 1lt2pi 10974 nlt1pi 10975 indpi 10976 nqereu 10998 |
Copyright terms: Public domain | W3C validator |