| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpiord | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 10766 | . . 3 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | 1 | breqi 5095 | . 2 ⊢ (𝐴 <N 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵) |
| 3 | brinxp 5693 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵)) | |
| 4 | epelg 5515 | . . . 4 ⊢ (𝐵 ∈ N → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 6 | 3, 5 | bitr3d 281 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴( E ∩ (N × N))𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 7 | 2, 6 | bitrid 283 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∩ cin 3896 class class class wbr 5089 E cep 5513 × cxp 5612 Ncnpi 10735 <N clti 10738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-xp 5620 df-lti 10766 |
| This theorem is referenced by: ltexpi 10793 ltapi 10794 ltmpi 10795 1lt2pi 10796 nlt1pi 10797 indpi 10798 nqereu 10820 |
| Copyright terms: Public domain | W3C validator |