MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltpiord Structured version   Visualization version   GIF version

Theorem ltpiord 10901
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
ltpiord ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 10889 . . 3 <N = ( E ∩ (N × N))
21breqi 5125 . 2 (𝐴 <N 𝐵𝐴( E ∩ (N × N))𝐵)
3 brinxp 5733 . . 3 ((𝐴N𝐵N) → (𝐴 E 𝐵𝐴( E ∩ (N × N))𝐵))
4 epelg 5554 . . . 4 (𝐵N → (𝐴 E 𝐵𝐴𝐵))
54adantl 481 . . 3 ((𝐴N𝐵N) → (𝐴 E 𝐵𝐴𝐵))
63, 5bitr3d 281 . 2 ((𝐴N𝐵N) → (𝐴( E ∩ (N × N))𝐵𝐴𝐵))
72, 6bitrid 283 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  cin 3925   class class class wbr 5119   E cep 5552   × cxp 5652  Ncnpi 10858   <N clti 10861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-eprel 5553  df-xp 5660  df-lti 10889
This theorem is referenced by:  ltexpi  10916  ltapi  10917  ltmpi  10918  1lt2pi  10919  nlt1pi  10920  indpi  10921  nqereu  10943
  Copyright terms: Public domain W3C validator