Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltpiord | Structured version Visualization version GIF version |
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 10489 | . . 3 ⊢ <N = ( E ∩ (N × N)) | |
2 | 1 | breqi 5059 | . 2 ⊢ (𝐴 <N 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵) |
3 | brinxp 5627 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵)) | |
4 | epelg 5461 | . . . 4 ⊢ (𝐵 ∈ N → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | 4 | adantl 485 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
6 | 3, 5 | bitr3d 284 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴( E ∩ (N × N))𝐵 ↔ 𝐴 ∈ 𝐵)) |
7 | 2, 6 | syl5bb 286 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 ∩ cin 3865 class class class wbr 5053 E cep 5459 × cxp 5549 Ncnpi 10458 <N clti 10461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-eprel 5460 df-xp 5557 df-lti 10489 |
This theorem is referenced by: ltexpi 10516 ltapi 10517 ltmpi 10518 1lt2pi 10519 nlt1pi 10520 indpi 10521 nqereu 10543 |
Copyright terms: Public domain | W3C validator |