MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltpiord Structured version   Visualization version   GIF version

Theorem ltpiord 10840
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
ltpiord ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 10828 . . 3 <N = ( E ∩ (N × N))
21breqi 5113 . 2 (𝐴 <N 𝐵𝐴( E ∩ (N × N))𝐵)
3 brinxp 5717 . . 3 ((𝐴N𝐵N) → (𝐴 E 𝐵𝐴( E ∩ (N × N))𝐵))
4 epelg 5539 . . . 4 (𝐵N → (𝐴 E 𝐵𝐴𝐵))
54adantl 481 . . 3 ((𝐴N𝐵N) → (𝐴 E 𝐵𝐴𝐵))
63, 5bitr3d 281 . 2 ((𝐴N𝐵N) → (𝐴( E ∩ (N × N))𝐵𝐴𝐵))
72, 6bitrid 283 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cin 3913   class class class wbr 5107   E cep 5537   × cxp 5636  Ncnpi 10797   <N clti 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-eprel 5538  df-xp 5644  df-lti 10828
This theorem is referenced by:  ltexpi  10855  ltapi  10856  ltmpi  10857  1lt2pi  10858  nlt1pi  10859  indpi  10860  nqereu  10882
  Copyright terms: Public domain W3C validator