![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt2pi | Structured version Visualization version GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1lt2pi | ⊢ 1o <N (1o +N 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8642 | . . . . 5 ⊢ 1o ∈ ω | |
2 | nna0 8607 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1o +o ∅) = 1o |
4 | 0lt1o 8507 | . . . . 5 ⊢ ∅ ∈ 1o | |
5 | peano1 7882 | . . . . . 6 ⊢ ∅ ∈ ω | |
6 | nnaord 8622 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
7 | 5, 1, 1, 6 | mp3an 1460 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) |
8 | 4, 7 | mpbi 229 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) |
9 | 3, 8 | eqeltrri 2829 | . . 3 ⊢ 1o ∈ (1o +o 1o) |
10 | 1pi 10881 | . . . 4 ⊢ 1o ∈ N | |
11 | addpiord 10882 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
12 | 10, 10, 11 | mp2an 689 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) |
13 | 9, 12 | eleqtrri 2831 | . 2 ⊢ 1o ∈ (1o +N 1o) |
14 | addclpi 10890 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
15 | 10, 10, 14 | mp2an 689 | . . 3 ⊢ (1o +N 1o) ∈ N |
16 | ltpiord 10885 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
17 | 10, 15, 16 | mp2an 689 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) |
18 | 13, 17 | mpbir 230 | 1 ⊢ 1o <N (1o +N 1o) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∅c0 4322 class class class wbr 5148 (class class class)co 7412 ωcom 7858 1oc1o 8462 +o coa 8466 Ncnpi 10842 +N cpli 10843 <N clti 10845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-ni 10870 df-pli 10871 df-lti 10873 |
This theorem is referenced by: 1lt2nq 10971 |
Copyright terms: Public domain | W3C validator |