| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt2pi | Structured version Visualization version GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1lt2pi | ⊢ 1o <N (1o +N 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8660 | . . . . 5 ⊢ 1o ∈ ω | |
| 2 | nna0 8624 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1o +o ∅) = 1o |
| 4 | 0lt1o 8524 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 5 | peano1 7892 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 6 | nnaord 8639 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
| 7 | 5, 1, 1, 6 | mp3an 1462 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) |
| 8 | 4, 7 | mpbi 230 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) |
| 9 | 3, 8 | eqeltrri 2830 | . . 3 ⊢ 1o ∈ (1o +o 1o) |
| 10 | 1pi 10905 | . . . 4 ⊢ 1o ∈ N | |
| 11 | addpiord 10906 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
| 12 | 10, 10, 11 | mp2an 692 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) |
| 13 | 9, 12 | eleqtrri 2832 | . 2 ⊢ 1o ∈ (1o +N 1o) |
| 14 | addclpi 10914 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 15 | 10, 10, 14 | mp2an 692 | . . 3 ⊢ (1o +N 1o) ∈ N |
| 16 | ltpiord 10909 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
| 17 | 10, 15, 16 | mp2an 692 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) |
| 18 | 13, 17 | mpbir 231 | 1 ⊢ 1o <N (1o +N 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∅c0 4313 class class class wbr 5123 (class class class)co 7413 ωcom 7869 1oc1o 8481 +o coa 8485 Ncnpi 10866 +N cpli 10867 <N clti 10869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-ni 10894 df-pli 10895 df-lti 10897 |
| This theorem is referenced by: 1lt2nq 10995 |
| Copyright terms: Public domain | W3C validator |