| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt2pi | Structured version Visualization version GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1lt2pi | ⊢ 1o <N (1o +N 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8652 | . . . . 5 ⊢ 1o ∈ ω | |
| 2 | nna0 8616 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1o +o ∅) = 1o |
| 4 | 0lt1o 8516 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 5 | peano1 7884 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 6 | nnaord 8631 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
| 7 | 5, 1, 1, 6 | mp3an 1463 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) |
| 8 | 4, 7 | mpbi 230 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) |
| 9 | 3, 8 | eqeltrri 2831 | . . 3 ⊢ 1o ∈ (1o +o 1o) |
| 10 | 1pi 10897 | . . . 4 ⊢ 1o ∈ N | |
| 11 | addpiord 10898 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
| 12 | 10, 10, 11 | mp2an 692 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) |
| 13 | 9, 12 | eleqtrri 2833 | . 2 ⊢ 1o ∈ (1o +N 1o) |
| 14 | addclpi 10906 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 15 | 10, 10, 14 | mp2an 692 | . . 3 ⊢ (1o +N 1o) ∈ N |
| 16 | ltpiord 10901 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
| 17 | 10, 15, 16 | mp2an 692 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) |
| 18 | 13, 17 | mpbir 231 | 1 ⊢ 1o <N (1o +N 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∅c0 4308 class class class wbr 5119 (class class class)co 7405 ωcom 7861 1oc1o 8473 +o coa 8477 Ncnpi 10858 +N cpli 10859 <N clti 10861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-ni 10886 df-pli 10887 df-lti 10889 |
| This theorem is referenced by: 1lt2nq 10987 |
| Copyright terms: Public domain | W3C validator |