MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2pi Structured version   Visualization version   GIF version

Theorem 1lt2pi 10858
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2pi 1o <N (1o +N 1o)

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 8604 . . . . 5 1o ∈ ω
2 nna0 8568 . . . . 5 (1o ∈ ω → (1o +o ∅) = 1o)
31, 2ax-mp 5 . . . 4 (1o +o ∅) = 1o
4 0lt1o 8468 . . . . 5 ∅ ∈ 1o
5 peano1 7865 . . . . . 6 ∅ ∈ ω
6 nnaord 8583 . . . . . 6 ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)))
75, 1, 1, 6mp3an 1463 . . . . 5 (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))
84, 7mpbi 230 . . . 4 (1o +o ∅) ∈ (1o +o 1o)
93, 8eqeltrri 2825 . . 3 1o ∈ (1o +o 1o)
10 1pi 10836 . . . 4 1oN
11 addpiord 10837 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) = (1o +o 1o))
1210, 10, 11mp2an 692 . . 3 (1o +N 1o) = (1o +o 1o)
139, 12eleqtrri 2827 . 2 1o ∈ (1o +N 1o)
14 addclpi 10845 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
1510, 10, 14mp2an 692 . . 3 (1o +N 1o) ∈ N
16 ltpiord 10840 . . 3 ((1oN ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)))
1710, 15, 16mp2an 692 . 2 (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))
1813, 17mpbir 231 1 1o <N (1o +N 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  c0 4296   class class class wbr 5107  (class class class)co 7387  ωcom 7842  1oc1o 8427   +o coa 8431  Ncnpi 10797   +N cpli 10798   <N clti 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-ni 10825  df-pli 10826  df-lti 10828
This theorem is referenced by:  1lt2nq  10926
  Copyright terms: Public domain W3C validator