![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt2pi | Structured version Visualization version GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1lt2pi | ⊢ 1o <N (1o +N 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8696 | . . . . 5 ⊢ 1o ∈ ω | |
2 | nna0 8660 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1o +o ∅) = 1o |
4 | 0lt1o 8560 | . . . . 5 ⊢ ∅ ∈ 1o | |
5 | peano1 7927 | . . . . . 6 ⊢ ∅ ∈ ω | |
6 | nnaord 8675 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
7 | 5, 1, 1, 6 | mp3an 1461 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) |
8 | 4, 7 | mpbi 230 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) |
9 | 3, 8 | eqeltrri 2841 | . . 3 ⊢ 1o ∈ (1o +o 1o) |
10 | 1pi 10952 | . . . 4 ⊢ 1o ∈ N | |
11 | addpiord 10953 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
12 | 10, 10, 11 | mp2an 691 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) |
13 | 9, 12 | eleqtrri 2843 | . 2 ⊢ 1o ∈ (1o +N 1o) |
14 | addclpi 10961 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
15 | 10, 10, 14 | mp2an 691 | . . 3 ⊢ (1o +N 1o) ∈ N |
16 | ltpiord 10956 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
17 | 10, 15, 16 | mp2an 691 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) |
18 | 13, 17 | mpbir 231 | 1 ⊢ 1o <N (1o +N 1o) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∅c0 4352 class class class wbr 5166 (class class class)co 7448 ωcom 7903 1oc1o 8515 +o coa 8519 Ncnpi 10913 +N cpli 10914 <N clti 10916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-ni 10941 df-pli 10942 df-lti 10944 |
This theorem is referenced by: 1lt2nq 11042 |
Copyright terms: Public domain | W3C validator |