MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt2pi Structured version   Visualization version   GIF version

Theorem 1lt2pi 10943
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1lt2pi 1o <N (1o +N 1o)

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 8677 . . . . 5 1o ∈ ω
2 nna0 8641 . . . . 5 (1o ∈ ω → (1o +o ∅) = 1o)
31, 2ax-mp 5 . . . 4 (1o +o ∅) = 1o
4 0lt1o 8541 . . . . 5 ∅ ∈ 1o
5 peano1 7911 . . . . . 6 ∅ ∈ ω
6 nnaord 8656 . . . . . 6 ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)))
75, 1, 1, 6mp3an 1460 . . . . 5 (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))
84, 7mpbi 230 . . . 4 (1o +o ∅) ∈ (1o +o 1o)
93, 8eqeltrri 2836 . . 3 1o ∈ (1o +o 1o)
10 1pi 10921 . . . 4 1oN
11 addpiord 10922 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) = (1o +o 1o))
1210, 10, 11mp2an 692 . . 3 (1o +N 1o) = (1o +o 1o)
139, 12eleqtrri 2838 . 2 1o ∈ (1o +N 1o)
14 addclpi 10930 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
1510, 10, 14mp2an 692 . . 3 (1o +N 1o) ∈ N
16 ltpiord 10925 . . 3 ((1oN ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)))
1710, 15, 16mp2an 692 . 2 (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))
1813, 17mpbir 231 1 1o <N (1o +N 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2106  c0 4339   class class class wbr 5148  (class class class)co 7431  ωcom 7887  1oc1o 8498   +o coa 8502  Ncnpi 10882   +N cpli 10883   <N clti 10885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-ni 10910  df-pli 10911  df-lti 10913
This theorem is referenced by:  1lt2nq  11011
  Copyright terms: Public domain W3C validator