MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metreslem Structured version   Visualization version   GIF version

Theorem metreslem 23423
Description: Lemma for metres 23426. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
metreslem (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))

Proof of Theorem metreslem
StepHypRef Expression
1 resdmres 6124 . 2 (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅))
2 ineq2 4137 . . . 4 (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)))
3 dmres 5902 . . . 4 dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷)
4 inxp 5730 . . . . 5 ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋𝑅) × (𝑋𝑅))
5 incom 4131 . . . . 5 ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))
64, 5eqtr3i 2768 . . . 4 ((𝑋𝑅) × (𝑋𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))
72, 3, 63eqtr4g 2804 . . 3 (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋𝑅) × (𝑋𝑅)))
87reseq2d 5880 . 2 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
91, 8eqtr3id 2793 1 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3882   × cxp 5578  dom cdm 5580  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592
This theorem is referenced by:  xmetres  23425  metres  23426
  Copyright terms: Public domain W3C validator