MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metreslem Structured version   Visualization version   GIF version

Theorem metreslem 23260
Description: Lemma for metres 23263. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
metreslem (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))

Proof of Theorem metreslem
StepHypRef Expression
1 resdmres 6095 . 2 (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅))
2 ineq2 4121 . . . 4 (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)))
3 dmres 5873 . . . 4 dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷)
4 inxp 5701 . . . . 5 ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋𝑅) × (𝑋𝑅))
5 incom 4115 . . . . 5 ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))
64, 5eqtr3i 2767 . . . 4 ((𝑋𝑅) × (𝑋𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))
72, 3, 63eqtr4g 2803 . . 3 (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋𝑅) × (𝑋𝑅)))
87reseq2d 5851 . 2 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
91, 8eqtr3id 2792 1 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  cin 3865   × cxp 5549  dom cdm 5551  cres 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563
This theorem is referenced by:  xmetres  23262  metres  23263
  Copyright terms: Public domain W3C validator