![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metreslem | Structured version Visualization version GIF version |
Description: Lemma for metres 24362. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
metreslem | ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdmres 6243 | . 2 ⊢ (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅)) | |
2 | ineq2 4207 | . . . 4 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))) | |
3 | dmres 6021 | . . . 4 ⊢ dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷) | |
4 | inxp 5838 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) | |
5 | incom 4202 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) | |
6 | 4, 5 | eqtr3i 2756 | . . . 4 ⊢ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) |
7 | 2, 3, 6 | 3eqtr4g 2791 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) |
8 | 7 | reseq2d 5989 | . 2 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
9 | 1, 8 | eqtr3id 2780 | 1 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∩ cin 3946 × cxp 5680 dom cdm 5682 ↾ cres 5684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 |
This theorem is referenced by: xmetres 24361 metres 24362 |
Copyright terms: Public domain | W3C validator |