|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > metreslem | Structured version Visualization version GIF version | ||
| Description: Lemma for metres 24376. (Contributed by Mario Carneiro, 24-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| metreslem | ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resdmres 6251 | . 2 ⊢ (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅)) | |
| 2 | ineq2 4213 | . . . 4 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))) | |
| 3 | dmres 6029 | . . . 4 ⊢ dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷) | |
| 4 | inxp 5841 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) | |
| 5 | incom 4208 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) | |
| 6 | 4, 5 | eqtr3i 2766 | . . . 4 ⊢ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) | 
| 7 | 2, 3, 6 | 3eqtr4g 2801 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) | 
| 8 | 7 | reseq2d 5996 | . 2 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | 
| 9 | 1, 8 | eqtr3id 2790 | 1 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∩ cin 3949 × cxp 5682 dom cdm 5684 ↾ cres 5686 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 | 
| This theorem is referenced by: xmetres 24375 metres 24376 | 
| Copyright terms: Public domain | W3C validator |