| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metreslem | Structured version Visualization version GIF version | ||
| Description: Lemma for metres 24253. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| metreslem | ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres 6205 | . 2 ⊢ (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅)) | |
| 2 | ineq2 4177 | . . . 4 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))) | |
| 3 | dmres 5983 | . . . 4 ⊢ dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷) | |
| 4 | inxp 5795 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) | |
| 5 | incom 4172 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) | |
| 6 | 4, 5 | eqtr3i 2754 | . . . 4 ⊢ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) |
| 7 | 2, 3, 6 | 3eqtr4g 2789 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) |
| 8 | 7 | reseq2d 5950 | . 2 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
| 9 | 1, 8 | eqtr3id 2778 | 1 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 × cxp 5636 dom cdm 5638 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 |
| This theorem is referenced by: xmetres 24252 metres 24253 |
| Copyright terms: Public domain | W3C validator |