Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metreslem | Structured version Visualization version GIF version |
Description: Lemma for metres 23263. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
metreslem | ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdmres 6095 | . 2 ⊢ (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅)) | |
2 | ineq2 4121 | . . . 4 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))) | |
3 | dmres 5873 | . . . 4 ⊢ dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷) | |
4 | inxp 5701 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) | |
5 | incom 4115 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) | |
6 | 4, 5 | eqtr3i 2767 | . . . 4 ⊢ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) |
7 | 2, 3, 6 | 3eqtr4g 2803 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) |
8 | 7 | reseq2d 5851 | . 2 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
9 | 1, 8 | eqtr3id 2792 | 1 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∩ cin 3865 × cxp 5549 dom cdm 5551 ↾ cres 5553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 |
This theorem is referenced by: xmetres 23262 metres 23263 |
Copyright terms: Public domain | W3C validator |