Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metres2 | Structured version Visualization version GIF version |
Description: Lemma for metres 23563. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metres2 | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metxmet 23532 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | xmetres2 23559 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) | |
3 | 1, 2 | sylan 581 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |
4 | metf 23528 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
5 | 4 | adantr 482 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
6 | simpr 486 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) | |
7 | xpss12 5615 | . . . 4 ⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) | |
8 | 6, 7 | sylancom 589 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
9 | 5, 8 | fssresd 6671 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ) |
10 | ismet2 23531 | . 2 ⊢ ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅) ∧ (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ)) | |
11 | 3, 9, 10 | sylanbrc 584 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ⊆ wss 3892 × cxp 5598 ↾ cres 5602 ⟶wf 6454 ‘cfv 6458 ℝcr 10916 ∞Metcxmet 20627 Metcmet 20628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-mulcl 10979 ax-i2m1 10985 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-xadd 12895 df-xmet 20635 df-met 20636 |
This theorem is referenced by: metres 23563 xpsmet 23580 tmsms 23688 imasf1oms 23691 prdsms 23732 remet 23998 lebnumii 24174 cmetss 24525 sstotbnd2 35976 bndss 35988 equivbnd2 35994 rrnheibor 36039 iccbnd 36042 |
Copyright terms: Public domain | W3C validator |