![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metres2 | Structured version Visualization version GIF version |
Description: Lemma for metres 23871. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metres2 | β’ ((π· β (Metβπ) β§ π β π) β (π· βΎ (π Γ π )) β (Metβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metxmet 23840 | . . 3 β’ (π· β (Metβπ) β π· β (βMetβπ)) | |
2 | xmetres2 23867 | . . 3 β’ ((π· β (βMetβπ) β§ π β π) β (π· βΎ (π Γ π )) β (βMetβπ )) | |
3 | 1, 2 | sylan 581 | . 2 β’ ((π· β (Metβπ) β§ π β π) β (π· βΎ (π Γ π )) β (βMetβπ )) |
4 | metf 23836 | . . . 4 β’ (π· β (Metβπ) β π·:(π Γ π)βΆβ) | |
5 | 4 | adantr 482 | . . 3 β’ ((π· β (Metβπ) β§ π β π) β π·:(π Γ π)βΆβ) |
6 | simpr 486 | . . . 4 β’ ((π· β (Metβπ) β§ π β π) β π β π) | |
7 | xpss12 5692 | . . . 4 β’ ((π β π β§ π β π) β (π Γ π ) β (π Γ π)) | |
8 | 6, 7 | sylancom 589 | . . 3 β’ ((π· β (Metβπ) β§ π β π) β (π Γ π ) β (π Γ π)) |
9 | 5, 8 | fssresd 6759 | . 2 β’ ((π· β (Metβπ) β§ π β π) β (π· βΎ (π Γ π )):(π Γ π )βΆβ) |
10 | ismet2 23839 | . 2 β’ ((π· βΎ (π Γ π )) β (Metβπ ) β ((π· βΎ (π Γ π )) β (βMetβπ ) β§ (π· βΎ (π Γ π )):(π Γ π )βΆβ)) | |
11 | 3, 9, 10 | sylanbrc 584 | 1 β’ ((π· β (Metβπ) β§ π β π) β (π· βΎ (π Γ π )) β (Metβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β wcel 2107 β wss 3949 Γ cxp 5675 βΎ cres 5679 βΆwf 6540 βcfv 6544 βcr 11109 βMetcxmet 20929 Metcmet 20930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-mulcl 11172 ax-i2m1 11178 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-xadd 13093 df-xmet 20937 df-met 20938 |
This theorem is referenced by: metres 23871 xpsmet 23888 tmsms 23996 imasf1oms 23999 prdsms 24040 remet 24306 lebnumii 24482 cmetss 24833 sstotbnd2 36642 bndss 36654 equivbnd2 36660 rrnheibor 36705 iccbnd 36708 |
Copyright terms: Public domain | W3C validator |