|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > metres2 | Structured version Visualization version GIF version | ||
| Description: Lemma for metres 24376. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| metres2 | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | metxmet 24345 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 2 | xmetres2 24372 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) | 
| 4 | metf 24341 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | 
| 6 | simpr 484 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) | |
| 7 | xpss12 5699 | . . . 4 ⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) | |
| 8 | 6, 7 | sylancom 588 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) | 
| 9 | 5, 8 | fssresd 6774 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ) | 
| 10 | ismet2 24344 | . 2 ⊢ ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅) ∧ (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ)) | |
| 11 | 3, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3950 × cxp 5682 ↾ cres 5686 ⟶wf 6556 ‘cfv 6560 ℝcr 11155 ∞Metcxmet 21350 Metcmet 21351 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-mulcl 11218 ax-i2m1 11224 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-xadd 13156 df-xmet 21358 df-met 21359 | 
| This theorem is referenced by: metres 24376 xpsmet 24393 tmsms 24501 imasf1oms 24504 prdsms 24545 remet 24812 lebnumii 24999 cmetss 25351 sstotbnd2 37782 bndss 37794 equivbnd2 37800 rrnheibor 37845 iccbnd 37848 | 
| Copyright terms: Public domain | W3C validator |