MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metres2 Structured version   Visualization version   GIF version

Theorem metres2 23561
Description: Lemma for metres 23563. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅))

Proof of Theorem metres2
StepHypRef Expression
1 metxmet 23532 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 xmetres2 23559 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
31, 2sylan 581 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
4 metf 23528 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
54adantr 482 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
6 simpr 486 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
7 xpss12 5615 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
86, 7sylancom 589 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
95, 8fssresd 6671 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ)
10 ismet2 23531 . 2 ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅) ∧ (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ))
113, 9, 10sylanbrc 584 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  wss 3892   × cxp 5598  cres 5602  wf 6454  cfv 6458  cr 10916  ∞Metcxmet 20627  Metcmet 20628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-mulcl 10979  ax-i2m1 10985
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-xadd 12895  df-xmet 20635  df-met 20636
This theorem is referenced by:  metres  23563  xpsmet  23580  tmsms  23688  imasf1oms  23691  prdsms  23732  remet  23998  lebnumii  24174  cmetss  24525  sstotbnd2  35976  bndss  35988  equivbnd2  35994  rrnheibor  36039  iccbnd  36042
  Copyright terms: Public domain W3C validator