![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metres | Structured version Visualization version GIF version |
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metres | ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 24356 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
2 | fdm 6746 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → dom 𝐷 = (𝑋 × 𝑋)) | |
3 | metreslem 24388 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
5 | inss1 4245 | . . 3 ⊢ (𝑋 ∩ 𝑅) ⊆ 𝑋 | |
6 | metres2 24389 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∩ 𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (Met‘(𝑋 ∩ 𝑅))) | |
7 | 5, 6 | mpan2 691 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (Met‘(𝑋 ∩ 𝑅))) |
8 | 4, 7 | eqeltrd 2839 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 × cxp 5687 dom cdm 5689 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 ℝcr 11152 Metcmet 21368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-xadd 13153 df-xmet 21375 df-met 21376 |
This theorem is referenced by: ressms 24555 |
Copyright terms: Public domain | W3C validator |