![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metres | Structured version Visualization version GIF version |
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metres | ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metf 22543 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
2 | fdm 6299 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → dom 𝐷 = (𝑋 × 𝑋)) | |
3 | metreslem 22575 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
5 | inss1 4053 | . . 3 ⊢ (𝑋 ∩ 𝑅) ⊆ 𝑋 | |
6 | metres2 22576 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∩ 𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (Met‘(𝑋 ∩ 𝑅))) | |
7 | 5, 6 | mpan2 681 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (Met‘(𝑋 ∩ 𝑅))) |
8 | 4, 7 | eqeltrd 2859 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∩ cin 3791 ⊆ wss 3792 × cxp 5353 dom cdm 5355 ↾ cres 5357 ⟶wf 6131 ‘cfv 6135 ℝcr 10271 Metcmet 20128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-mulcl 10334 ax-i2m1 10340 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-xadd 12258 df-xmet 20135 df-met 20136 |
This theorem is referenced by: ressms 22739 |
Copyright terms: Public domain | W3C validator |