MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetres2 Structured version   Visualization version   GIF version

Theorem xmetres2 24282
Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetres2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))

Proof of Theorem xmetres2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6877 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
21adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑋 ∈ dom ∞Met)
3 simpr 484 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
42, 3ssexd 5274 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅 ∈ V)
5 xmetf 24250 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7 xpss12 5646 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
83, 7sylancom 588 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
96, 8fssresd 6709 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*)
10 ovres 7535 . . . . 5 ((𝑥𝑅𝑦𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1110adantl 481 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1211eqeq1d 2731 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
13 simpll 766 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
14 simplr 768 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑅𝑋)
15 simprl 770 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
1614, 15sseldd 3944 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑋)
17 simprr 772 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
1814, 17sseldd 3944 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑋)
19 xmeteq0 24259 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2013, 16, 18, 19syl3anc 1373 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2112, 20bitrd 279 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦))
22 simpll 766 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
23 simplr 768 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑅𝑋)
24 simpr3 1197 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
2523, 24sseldd 3944 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑋)
26163adantr3 1172 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑋)
27183adantr3 1172 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑋)
28 xmettri2 24261 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧𝑋𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
2922, 25, 26, 27, 28syl13anc 1374 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
30113adantr3 1172 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
31 simpr1 1195 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
3224, 31ovresd 7536 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥))
33 simpr2 1196 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
3424, 33ovresd 7536 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦))
3532, 34oveq12d 7387 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
3629, 30, 353brtr4d 5134 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)))
374, 9, 21, 36isxmetd 24247 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911   class class class wbr 5102   × cxp 5629  dom cdm 5631  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  0cc0 11044  *cxr 11183  cle 11185   +𝑒 cxad 13046  ∞Metcxmet 21281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-xr 11188  df-xmet 21289
This theorem is referenced by:  metres2  24284  xmetres  24285  xpsxmet  24301  xpsdsval  24302  xmetresbl  24358  tmsxms  24407  imasf1oxms  24410  metrest  24445  prdsxms  24451  tmsxpsval  24459  nrginvrcn  24613  divcnOLD  24790  divcn  24792  iitopon  24805  cncfmet  24835  cfilres  25229  dvlip2  25933  ftc1lem6  25981  ulmdvlem1  26342  ulmdvlem3  26344  abelth  26384  cxpcn3  26691  rlimcnp  26908  minvecolem4b  30857  minvecolem4  30859  ftc1cnnc  37679  blbnd  37774  ismtyres  37795  reheibor  37826
  Copyright terms: Public domain W3C validator