MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetres2 Structured version   Visualization version   GIF version

Theorem xmetres2 24387
Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetres2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))

Proof of Theorem xmetres2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6944 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
21adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑋 ∈ dom ∞Met)
3 simpr 484 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
42, 3ssexd 5330 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅 ∈ V)
5 xmetf 24355 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7 xpss12 5704 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
83, 7sylancom 588 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
96, 8fssresd 6776 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*)
10 ovres 7599 . . . . 5 ((𝑥𝑅𝑦𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1110adantl 481 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1211eqeq1d 2737 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
13 simpll 767 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
14 simplr 769 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑅𝑋)
15 simprl 771 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
1614, 15sseldd 3996 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑋)
17 simprr 773 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
1814, 17sseldd 3996 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑋)
19 xmeteq0 24364 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2013, 16, 18, 19syl3anc 1370 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2112, 20bitrd 279 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦))
22 simpll 767 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
23 simplr 769 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑅𝑋)
24 simpr3 1195 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
2523, 24sseldd 3996 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑋)
26163adantr3 1170 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑋)
27183adantr3 1170 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑋)
28 xmettri2 24366 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧𝑋𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
2922, 25, 26, 27, 28syl13anc 1371 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
30113adantr3 1170 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
31 simpr1 1193 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
3224, 31ovresd 7600 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥))
33 simpr2 1194 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
3424, 33ovresd 7600 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦))
3532, 34oveq12d 7449 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
3629, 30, 353brtr4d 5180 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)))
374, 9, 21, 36isxmetd 24352 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963   class class class wbr 5148   × cxp 5687  dom cdm 5689  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  0cc0 11153  *cxr 11292  cle 11294   +𝑒 cxad 13150  ∞Metcxmet 21367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-xr 11297  df-xmet 21375
This theorem is referenced by:  metres2  24389  xmetres  24390  xpsxmet  24406  xpsdsval  24407  xmetresbl  24463  tmsxms  24515  imasf1oxms  24518  metrest  24553  prdsxms  24559  tmsxpsval  24567  nrginvrcn  24729  divcnOLD  24904  divcn  24906  iitopon  24919  cncfmet  24949  cfilres  25344  dvlip2  26049  ftc1lem6  26097  ulmdvlem1  26458  ulmdvlem3  26460  abelth  26500  cxpcn3  26806  rlimcnp  27023  minvecolem4b  30907  minvecolem4  30909  ftc1cnnc  37679  blbnd  37774  ismtyres  37795  reheibor  37826
  Copyright terms: Public domain W3C validator