MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetres2 Structured version   Visualization version   GIF version

Theorem xmetres2 24247
Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetres2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))

Proof of Theorem xmetres2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6857 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
21adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑋 ∈ dom ∞Met)
3 simpr 484 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
42, 3ssexd 5263 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝑅 ∈ V)
5 xmetf 24215 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7 xpss12 5634 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
83, 7sylancom 588 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
96, 8fssresd 6691 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*)
10 ovres 7515 . . . . 5 ((𝑥𝑅𝑦𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1110adantl 481 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
1211eqeq1d 2731 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
13 simpll 766 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
14 simplr 768 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑅𝑋)
15 simprl 770 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
1614, 15sseldd 3936 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑋)
17 simprr 772 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
1814, 17sseldd 3936 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑋)
19 xmeteq0 24224 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2013, 16, 18, 19syl3anc 1373 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
2112, 20bitrd 279 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦))
22 simpll 766 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
23 simplr 768 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑅𝑋)
24 simpr3 1197 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
2523, 24sseldd 3936 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑧𝑋)
26163adantr3 1172 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑋)
27183adantr3 1172 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑋)
28 xmettri2 24226 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧𝑋𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
2922, 25, 26, 27, 28syl13anc 1374 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
30113adantr3 1172 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦))
31 simpr1 1195 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
3224, 31ovresd 7516 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥))
33 simpr2 1196 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
3424, 33ovresd 7516 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦))
3532, 34oveq12d 7367 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
3629, 30, 353brtr4d 5124 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) ∧ (𝑥𝑅𝑦𝑅𝑧𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)))
374, 9, 21, 36isxmetd 24212 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903   class class class wbr 5092   × cxp 5617  dom cdm 5619  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  0cc0 11009  *cxr 11148  cle 11150   +𝑒 cxad 13012  ∞Metcxmet 21246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-xr 11153  df-xmet 21254
This theorem is referenced by:  metres2  24249  xmetres  24250  xpsxmet  24266  xpsdsval  24267  xmetresbl  24323  tmsxms  24372  imasf1oxms  24375  metrest  24410  prdsxms  24416  tmsxpsval  24424  nrginvrcn  24578  divcnOLD  24755  divcn  24757  iitopon  24770  cncfmet  24800  cfilres  25194  dvlip2  25898  ftc1lem6  25946  ulmdvlem1  26307  ulmdvlem3  26309  abelth  26349  cxpcn3  26656  rlimcnp  26873  minvecolem4b  30822  minvecolem4  30824  ftc1cnnc  37682  blbnd  37777  ismtyres  37798  reheibor  37829
  Copyright terms: Public domain W3C validator