MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetres2 Structured version   Visualization version   GIF version

Theorem xmetres2 23867
Description: Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetres2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) β†’ (𝐷 β†Ύ (𝑅 Γ— 𝑅)) ∈ (∞Metβ€˜π‘…))

Proof of Theorem xmetres2
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6929 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
21adantr 482 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) β†’ 𝑋 ∈ dom ∞Met)
3 simpr 486 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) β†’ 𝑅 βŠ† 𝑋)
42, 3ssexd 5325 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) β†’ 𝑅 ∈ V)
5 xmetf 23835 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
65adantr 482 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
7 xpss12 5692 . . . 4 ((𝑅 βŠ† 𝑋 ∧ 𝑅 βŠ† 𝑋) β†’ (𝑅 Γ— 𝑅) βŠ† (𝑋 Γ— 𝑋))
83, 7sylancom 589 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) β†’ (𝑅 Γ— 𝑅) βŠ† (𝑋 Γ— 𝑋))
96, 8fssresd 6759 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) β†’ (𝐷 β†Ύ (𝑅 Γ— 𝑅)):(𝑅 Γ— 𝑅)βŸΆβ„*)
10 ovres 7573 . . . . 5 ((π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) β†’ (π‘₯(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦) = (π‘₯𝐷𝑦))
1110adantl 483 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ (π‘₯(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦) = (π‘₯𝐷𝑦))
1211eqeq1d 2735 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ ((π‘₯(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦) = 0 ↔ (π‘₯𝐷𝑦) = 0))
13 simpll 766 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
14 simplr 768 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ 𝑅 βŠ† 𝑋)
15 simprl 770 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ π‘₯ ∈ 𝑅)
1614, 15sseldd 3984 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ π‘₯ ∈ 𝑋)
17 simprr 772 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ 𝑦 ∈ 𝑅)
1814, 17sseldd 3984 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ 𝑦 ∈ 𝑋)
19 xmeteq0 23844 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
2013, 16, 18, 19syl3anc 1372 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
2112, 20bitrd 279 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) β†’ ((π‘₯(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦) = 0 ↔ π‘₯ = 𝑦))
22 simpll 766 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
23 simplr 768 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑅 βŠ† 𝑋)
24 simpr3 1197 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑧 ∈ 𝑅)
2523, 24sseldd 3984 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑧 ∈ 𝑋)
26163adantr3 1172 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ π‘₯ ∈ 𝑋)
27183adantr3 1172 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑦 ∈ 𝑋)
28 xmettri2 23846 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
2922, 25, 26, 27, 28syl13anc 1373 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
30113adantr3 1172 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦) = (π‘₯𝐷𝑦))
31 simpr1 1195 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ π‘₯ ∈ 𝑅)
3224, 31ovresd 7574 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑧(𝐷 β†Ύ (𝑅 Γ— 𝑅))π‘₯) = (𝑧𝐷π‘₯))
33 simpr2 1196 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑦 ∈ 𝑅)
3424, 33ovresd 7574 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑧(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦) = (𝑧𝐷𝑦))
3532, 34oveq12d 7427 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ ((𝑧(𝐷 β†Ύ (𝑅 Γ— 𝑅))π‘₯) +𝑒 (𝑧(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦)) = ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
3629, 30, 353brtr4d 5181 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦) ≀ ((𝑧(𝐷 β†Ύ (𝑅 Γ— 𝑅))π‘₯) +𝑒 (𝑧(𝐷 β†Ύ (𝑅 Γ— 𝑅))𝑦)))
374, 9, 21, 36isxmetd 23832 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 βŠ† 𝑋) β†’ (𝐷 β†Ύ (𝑅 Γ— 𝑅)) ∈ (∞Metβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  Vcvv 3475   βŠ† wss 3949   class class class wbr 5149   Γ— cxp 5675  dom cdm 5677   β†Ύ cres 5679  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  0cc0 11110  β„*cxr 11247   ≀ cle 11249   +𝑒 cxad 13090  βˆžMetcxmet 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-xr 11252  df-xmet 20937
This theorem is referenced by:  metres2  23869  xmetres  23870  xpsxmet  23886  xpsdsval  23887  xmetresbl  23943  tmsxms  23995  imasf1oxms  23998  metrest  24033  prdsxms  24039  tmsxpsval  24047  nrginvrcn  24209  divcn  24384  iitopon  24395  cncfmet  24425  cfilres  24813  dvlip2  25512  ftc1lem6  25558  ulmdvlem1  25912  ulmdvlem3  25914  abelth  25953  cxpcn3  26256  rlimcnp  26470  minvecolem4b  30131  minvecolem4  30133  gg-divcn  35163  ftc1cnnc  36560  blbnd  36655  ismtyres  36676  reheibor  36707
  Copyright terms: Public domain W3C validator