| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elfvdm 6942 | . . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | 
| 2 | 1 | adantr 480 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑋 ∈ dom ∞Met) | 
| 3 |  | simpr 484 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) | 
| 4 | 2, 3 | ssexd 5323 | . 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ∈ V) | 
| 5 |  | xmetf 24340 | . . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | 
| 6 | 5 | adantr 480 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | 
| 7 |  | xpss12 5699 | . . . 4
⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) | 
| 8 | 3, 7 | sylancom 588 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) | 
| 9 | 6, 8 | fssresd 6774 | . 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*) | 
| 10 |  | ovres 7600 | . . . . 5
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) | 
| 11 | 10 | adantl 481 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) | 
| 12 | 11 | eqeq1d 2738 | . . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0)) | 
| 13 |  | simpll 766 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 14 |  | simplr 768 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) | 
| 15 |  | simprl 770 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) | 
| 16 | 14, 15 | sseldd 3983 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑋) | 
| 17 |  | simprr 772 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) | 
| 18 | 14, 17 | sseldd 3983 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑋) | 
| 19 |  | xmeteq0 24349 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) | 
| 20 | 13, 16, 18, 19 | syl3anc 1372 | . . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) | 
| 21 | 12, 20 | bitrd 279 | . 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦)) | 
| 22 |  | simpll 766 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 23 |  | simplr 768 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) | 
| 24 |  | simpr3 1196 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑅) | 
| 25 | 23, 24 | sseldd 3983 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑋) | 
| 26 | 16 | 3adantr3 1171 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑋) | 
| 27 | 18 | 3adantr3 1171 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑋) | 
| 28 |  | xmettri2 24351 | . . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) | 
| 29 | 22, 25, 26, 27, 28 | syl13anc 1373 | . . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) | 
| 30 | 11 | 3adantr3 1171 | . . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) | 
| 31 |  | simpr1 1194 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑅) | 
| 32 | 24, 31 | ovresd 7601 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥)) | 
| 33 |  | simpr2 1195 | . . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑅) | 
| 34 | 24, 33 | ovresd 7601 | . . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦)) | 
| 35 | 32, 34 | oveq12d 7450 | . . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) | 
| 36 | 29, 30, 35 | 3brtr4d 5174 | . 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦))) | 
| 37 | 4, 9, 21, 36 | isxmetd 24337 | 1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |