| Step | Hyp | Ref
| Expression |
| 1 | | elfvdm 6918 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑋 ∈ dom ∞Met) |
| 3 | | simpr 484 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) |
| 4 | 2, 3 | ssexd 5299 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ∈ V) |
| 5 | | xmetf 24273 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 6 | 5 | adantr 480 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 7 | | xpss12 5674 |
. . . 4
⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
| 8 | 3, 7 | sylancom 588 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
| 9 | 6, 8 | fssresd 6750 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*) |
| 10 | | ovres 7578 |
. . . . 5
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
| 11 | 10 | adantl 481 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
| 12 | 11 | eqeq1d 2738 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0)) |
| 13 | | simpll 766 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 14 | | simplr 768 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) |
| 15 | | simprl 770 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
| 16 | 14, 15 | sseldd 3964 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑋) |
| 17 | | simprr 772 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
| 18 | 14, 17 | sseldd 3964 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑋) |
| 19 | | xmeteq0 24282 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 20 | 13, 16, 18, 19 | syl3anc 1373 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 21 | 12, 20 | bitrd 279 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 22 | | simpll 766 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 23 | | simplr 768 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) |
| 24 | | simpr3 1197 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑅) |
| 25 | 23, 24 | sseldd 3964 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑋) |
| 26 | 16 | 3adantr3 1172 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑋) |
| 27 | 18 | 3adantr3 1172 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑋) |
| 28 | | xmettri2 24284 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 29 | 22, 25, 26, 27, 28 | syl13anc 1374 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 30 | 11 | 3adantr3 1172 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
| 31 | | simpr1 1195 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
| 32 | 24, 31 | ovresd 7579 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥)) |
| 33 | | simpr2 1196 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
| 34 | 24, 33 | ovresd 7579 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦)) |
| 35 | 32, 34 | oveq12d 7428 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
| 36 | 29, 30, 35 | 3brtr4d 5156 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦))) |
| 37 | 4, 9, 21, 36 | isxmetd 24270 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |