MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetres Structured version   Visualization version   GIF version

Theorem xmetres 24303
Description: A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xmetres (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋𝑅)))

Proof of Theorem xmetres
StepHypRef Expression
1 xmetf 24268 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 fdm 6715 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
3 metreslem 24301 . . 3 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
41, 2, 33syl 18 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
5 inss1 4212 . . 3 (𝑋𝑅) ⊆ 𝑋
6 xmetres2 24300 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))) ∈ (∞Met‘(𝑋𝑅)))
75, 6mpan2 691 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))) ∈ (∞Met‘(𝑋𝑅)))
84, 7eqeltrd 2834 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cin 3925  wss 3926   × cxp 5652  dom cdm 5654  cres 5656  wf 6527  cfv 6531  *cxr 11268  ∞Metcxmet 21300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-xr 11273  df-xmet 21308
This theorem is referenced by:  blres  24370  ressxms  24464  cfilresi  25247  caussi  25249  causs  25250  minvecolem4a  30858
  Copyright terms: Public domain W3C validator