![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetres | Structured version Visualization version GIF version |
Description: A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmetres | β’ (π· β (βMetβπ) β (π· βΎ (π Γ π )) β (βMetβ(π β© π ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 24056 | . . 3 β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) | |
2 | fdm 6726 | . . 3 β’ (π·:(π Γ π)βΆβ* β dom π· = (π Γ π)) | |
3 | metreslem 24089 | . . 3 β’ (dom π· = (π Γ π) β (π· βΎ (π Γ π )) = (π· βΎ ((π β© π ) Γ (π β© π )))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 β’ (π· β (βMetβπ) β (π· βΎ (π Γ π )) = (π· βΎ ((π β© π ) Γ (π β© π )))) |
5 | inss1 4228 | . . 3 β’ (π β© π ) β π | |
6 | xmetres2 24088 | . . 3 β’ ((π· β (βMetβπ) β§ (π β© π ) β π) β (π· βΎ ((π β© π ) Γ (π β© π ))) β (βMetβ(π β© π ))) | |
7 | 5, 6 | mpan2 688 | . 2 β’ (π· β (βMetβπ) β (π· βΎ ((π β© π ) Γ (π β© π ))) β (βMetβ(π β© π ))) |
8 | 4, 7 | eqeltrd 2832 | 1 β’ (π· β (βMetβπ) β (π· βΎ (π Γ π )) β (βMetβ(π β© π ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β© cin 3947 β wss 3948 Γ cxp 5674 dom cdm 5676 βΎ cres 5678 βΆwf 6539 βcfv 6543 β*cxr 11252 βMetcxmet 21130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8825 df-xr 11257 df-xmet 21138 |
This theorem is referenced by: blres 24158 ressxms 24255 cfilresi 25044 caussi 25046 causs 25047 minvecolem4a 30398 |
Copyright terms: Public domain | W3C validator |