MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetres Structured version   Visualization version   GIF version

Theorem xmetres 22977
Description: A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xmetres (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋𝑅)))

Proof of Theorem xmetres
StepHypRef Expression
1 xmetf 22942 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 fdm 6512 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
3 metreslem 22975 . . 3 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
41, 2, 33syl 18 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
5 inss1 4191 . . 3 (𝑋𝑅) ⊆ 𝑋
6 xmetres2 22974 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))) ∈ (∞Met‘(𝑋𝑅)))
75, 6mpan2 690 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))) ∈ (∞Met‘(𝑋𝑅)))
84, 7eqeltrd 2916 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cin 3919  wss 3920   × cxp 5541  dom cdm 5543  cres 5545  wf 6340  cfv 6344  *cxr 10673  ∞Metcxmet 20533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3760  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-fv 6352  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8405  df-xr 10678  df-xmet 20541
This theorem is referenced by:  blres  23044  ressxms  23138  cfilresi  23905  caussi  23907  causs  23908  minvecolem4a  28666
  Copyright terms: Public domain W3C validator