| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmetres | Structured version Visualization version GIF version | ||
| Description: A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmetres | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf 24250 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | fdm 6679 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋)) | |
| 3 | metreslem 24283 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
| 5 | inss1 4196 | . . 3 ⊢ (𝑋 ∩ 𝑅) ⊆ 𝑋 | |
| 6 | xmetres2 24282 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋 ∩ 𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (∞Met‘(𝑋 ∩ 𝑅))) | |
| 7 | 5, 6 | mpan2 691 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
| 8 | 4, 7 | eqeltrd 2828 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 dom cdm 5631 ↾ cres 5633 ⟶wf 6495 ‘cfv 6499 ℝ*cxr 11183 ∞Metcxmet 21281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-xr 11188 df-xmet 21289 |
| This theorem is referenced by: blres 24352 ressxms 24446 cfilresi 25228 caussi 25230 causs 25231 minvecolem4a 30856 |
| Copyright terms: Public domain | W3C validator |