![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndlrid | Structured version Visualization version GIF version |
Description: A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
mndlrid.p | ⊢ + = (+g‘𝐺) |
mndlrid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndlrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlrid.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndlrid.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | mndlrid.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | 1, 3 | mndid 17615 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)) |
5 | 1, 2, 3, 4 | mgmlrid 17578 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 +gcplusg 16264 0gc0g 16412 Mndcmnd 17606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-iota 6062 df-fun 6101 df-fv 6107 df-riota 6837 df-ov 6879 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 |
This theorem is referenced by: mndlid 17623 mndrid 17624 gsumvallem2 17684 gsumsubm 17685 srgidmlem 18833 ringidmlem 18883 frlmgsum 20433 |
Copyright terms: Public domain | W3C validator |