MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prds0g Structured version   Visualization version   GIF version

Theorem prds0g 18419
Description: Zero in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsmndd.y 𝑌 = (𝑆Xs𝑅)
prdsmndd.i (𝜑𝐼𝑊)
prdsmndd.s (𝜑𝑆𝑉)
prdsmndd.r (𝜑𝑅:𝐼⟶Mnd)
Assertion
Ref Expression
prds0g (𝜑 → (0g𝑅) = (0g𝑌))

Proof of Theorem prds0g
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsmndd.y . . . 4 𝑌 = (𝑆Xs𝑅)
2 eqid 2738 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3 eqid 2738 . . . 4 (+g𝑌) = (+g𝑌)
4 prdsmndd.s . . . . 5 (𝜑𝑆𝑉)
54elexd 3452 . . . 4 (𝜑𝑆 ∈ V)
6 prdsmndd.i . . . . 5 (𝜑𝐼𝑊)
76elexd 3452 . . . 4 (𝜑𝐼 ∈ V)
8 prdsmndd.r . . . 4 (𝜑𝑅:𝐼⟶Mnd)
9 eqid 2738 . . . 4 (0g𝑅) = (0g𝑅)
101, 2, 3, 5, 7, 8, 9prdsidlem 18417 . . 3 (𝜑 → ((0g𝑅) ∈ (Base‘𝑌) ∧ ∀𝑏 ∈ (Base‘𝑌)(((0g𝑅)(+g𝑌)𝑏) = 𝑏 ∧ (𝑏(+g𝑌)(0g𝑅)) = 𝑏)))
11 eqid 2738 . . . 4 (0g𝑌) = (0g𝑌)
121, 6, 4, 8prdsmndd 18418 . . . . 5 (𝜑𝑌 ∈ Mnd)
132, 3mndid 18395 . . . . 5 (𝑌 ∈ Mnd → ∃𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝑎(+g𝑌)𝑏) = 𝑏 ∧ (𝑏(+g𝑌)𝑎) = 𝑏))
1412, 13syl 17 . . . 4 (𝜑 → ∃𝑎 ∈ (Base‘𝑌)∀𝑏 ∈ (Base‘𝑌)((𝑎(+g𝑌)𝑏) = 𝑏 ∧ (𝑏(+g𝑌)𝑎) = 𝑏))
152, 11, 3, 14ismgmid 18349 . . 3 (𝜑 → (((0g𝑅) ∈ (Base‘𝑌) ∧ ∀𝑏 ∈ (Base‘𝑌)(((0g𝑅)(+g𝑌)𝑏) = 𝑏 ∧ (𝑏(+g𝑌)(0g𝑅)) = 𝑏)) ↔ (0g𝑌) = (0g𝑅)))
1610, 15mpbid 231 . 2 (𝜑 → (0g𝑌) = (0g𝑅))
1716eqcomd 2744 1 (𝜑 → (0g𝑅) = (0g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Xscprds 17156  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-mgm 18326  df-sgrp 18375  df-mnd 18386
This theorem is referenced by:  pws0g  18421  prdspjmhm  18467  prdsgrpd  18685  prdsinvgd  18686  prds1  19853  dsmm0cl  20947
  Copyright terms: Public domain W3C validator