MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcof Structured version   Visualization version   GIF version

Theorem fmptcof 7102
Description: Version of fmptco 7101 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptcof.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptcof (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcof
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . . . . 5 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 nfcsb1v 3886 . . . . . . 7 𝑥𝑧 / 𝑥𝑅
32nfel1 2908 . . . . . 6 𝑥𝑧 / 𝑥𝑅𝐵
4 csbeq1a 3876 . . . . . . 7 (𝑥 = 𝑧𝑅 = 𝑧 / 𝑥𝑅)
54eleq1d 2813 . . . . . 6 (𝑥 = 𝑧 → (𝑅𝐵𝑧 / 𝑥𝑅𝐵))
63, 5rspc 3576 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴 𝑅𝐵𝑧 / 𝑥𝑅𝐵))
71, 6mpan9 506 . . . 4 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝑅𝐵)
8 fmptcof.2 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝑅))
9 nfcv 2891 . . . . . 6 𝑧𝑅
109, 2, 4cbvmpt 5209 . . . . 5 (𝑥𝐴𝑅) = (𝑧𝐴𝑧 / 𝑥𝑅)
118, 10eqtrdi 2780 . . . 4 (𝜑𝐹 = (𝑧𝐴𝑧 / 𝑥𝑅))
12 fmptcof.3 . . . . 5 (𝜑𝐺 = (𝑦𝐵𝑆))
13 nfcv 2891 . . . . . 6 𝑤𝑆
14 nfcsb1v 3886 . . . . . 6 𝑦𝑤 / 𝑦𝑆
15 csbeq1a 3876 . . . . . 6 (𝑦 = 𝑤𝑆 = 𝑤 / 𝑦𝑆)
1613, 14, 15cbvmpt 5209 . . . . 5 (𝑦𝐵𝑆) = (𝑤𝐵𝑤 / 𝑦𝑆)
1712, 16eqtrdi 2780 . . . 4 (𝜑𝐺 = (𝑤𝐵𝑤 / 𝑦𝑆))
18 csbeq1 3865 . . . 4 (𝑤 = 𝑧 / 𝑥𝑅𝑤 / 𝑦𝑆 = 𝑧 / 𝑥𝑅 / 𝑦𝑆)
197, 11, 17, 18fmptco 7101 . . 3 (𝜑 → (𝐺𝐹) = (𝑧𝐴𝑧 / 𝑥𝑅 / 𝑦𝑆))
20 nfcv 2891 . . . 4 𝑧𝑅 / 𝑦𝑆
21 nfcv 2891 . . . . 5 𝑥𝑆
222, 21nfcsbw 3888 . . . 4 𝑥𝑧 / 𝑥𝑅 / 𝑦𝑆
234csbeq1d 3866 . . . 4 (𝑥 = 𝑧𝑅 / 𝑦𝑆 = 𝑧 / 𝑥𝑅 / 𝑦𝑆)
2420, 22, 23cbvmpt 5209 . . 3 (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑧𝐴𝑧 / 𝑥𝑅 / 𝑦𝑆)
2519, 24eqtr4di 2782 . 2 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
26 eqid 2729 . . . 4 𝐴 = 𝐴
27 nfcvd 2892 . . . . . 6 (𝑅𝐵𝑦𝑇)
28 fmptcof.4 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
2927, 28csbiegf 3895 . . . . 5 (𝑅𝐵𝑅 / 𝑦𝑆 = 𝑇)
3029ralimi 3066 . . . 4 (∀𝑥𝐴 𝑅𝐵 → ∀𝑥𝐴 𝑅 / 𝑦𝑆 = 𝑇)
31 mpteq12 5195 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝑅 / 𝑦𝑆 = 𝑇) → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
3226, 30, 31sylancr 587 . . 3 (∀𝑥𝐴 𝑅𝐵 → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
331, 32syl 17 . 2 (𝜑 → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
3425, 33eqtrd 2764 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  csb 3862  cmpt 5188  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  fmptcos  7103  yonedalem3b  18240  gsumcom2  19905  evl1sca  22221  cnmptk1  23568  cnmpt1k  23569  cnmptkk  23570  cncfcompt2  24801  cncfmpt1f  24807  copco  24918  pcoass  24924  sincn  26354  coscn  26355  lgseisenlem3  27288  fcomptf  32582  eulerpartgbij  34363
  Copyright terms: Public domain W3C validator