Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcof Structured version   Visualization version   GIF version

Theorem fmptcof 6873
 Description: Version of fmptco 6872 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptcof.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptcof (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcof
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . . . . 5 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 nfcsb1v 3889 . . . . . . 7 𝑥𝑧 / 𝑥𝑅
32nfel1 2996 . . . . . 6 𝑥𝑧 / 𝑥𝑅𝐵
4 csbeq1a 3879 . . . . . . 7 (𝑥 = 𝑧𝑅 = 𝑧 / 𝑥𝑅)
54eleq1d 2900 . . . . . 6 (𝑥 = 𝑧 → (𝑅𝐵𝑧 / 𝑥𝑅𝐵))
63, 5rspc 3596 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴 𝑅𝐵𝑧 / 𝑥𝑅𝐵))
71, 6mpan9 510 . . . 4 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝑅𝐵)
8 fmptcof.2 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝑅))
9 nfcv 2980 . . . . . 6 𝑧𝑅
109, 2, 4cbvmpt 5148 . . . . 5 (𝑥𝐴𝑅) = (𝑧𝐴𝑧 / 𝑥𝑅)
118, 10syl6eq 2875 . . . 4 (𝜑𝐹 = (𝑧𝐴𝑧 / 𝑥𝑅))
12 fmptcof.3 . . . . 5 (𝜑𝐺 = (𝑦𝐵𝑆))
13 nfcv 2980 . . . . . 6 𝑤𝑆
14 nfcsb1v 3889 . . . . . 6 𝑦𝑤 / 𝑦𝑆
15 csbeq1a 3879 . . . . . 6 (𝑦 = 𝑤𝑆 = 𝑤 / 𝑦𝑆)
1613, 14, 15cbvmpt 5148 . . . . 5 (𝑦𝐵𝑆) = (𝑤𝐵𝑤 / 𝑦𝑆)
1712, 16syl6eq 2875 . . . 4 (𝜑𝐺 = (𝑤𝐵𝑤 / 𝑦𝑆))
18 csbeq1 3868 . . . 4 (𝑤 = 𝑧 / 𝑥𝑅𝑤 / 𝑦𝑆 = 𝑧 / 𝑥𝑅 / 𝑦𝑆)
197, 11, 17, 18fmptco 6872 . . 3 (𝜑 → (𝐺𝐹) = (𝑧𝐴𝑧 / 𝑥𝑅 / 𝑦𝑆))
20 nfcv 2980 . . . 4 𝑧𝑅 / 𝑦𝑆
21 nfcv 2980 . . . . 5 𝑥𝑆
222, 21nfcsbw 3891 . . . 4 𝑥𝑧 / 𝑥𝑅 / 𝑦𝑆
234csbeq1d 3869 . . . 4 (𝑥 = 𝑧𝑅 / 𝑦𝑆 = 𝑧 / 𝑥𝑅 / 𝑦𝑆)
2420, 22, 23cbvmpt 5148 . . 3 (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑧𝐴𝑧 / 𝑥𝑅 / 𝑦𝑆)
2519, 24syl6eqr 2877 . 2 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
26 eqid 2824 . . . 4 𝐴 = 𝐴
27 nfcvd 2981 . . . . . 6 (𝑅𝐵𝑦𝑇)
28 fmptcof.4 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
2927, 28csbiegf 3898 . . . . 5 (𝑅𝐵𝑅 / 𝑦𝑆 = 𝑇)
3029ralimi 3154 . . . 4 (∀𝑥𝐴 𝑅𝐵 → ∀𝑥𝐴 𝑅 / 𝑦𝑆 = 𝑇)
31 mpteq12 5134 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝑅 / 𝑦𝑆 = 𝑇) → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
3226, 30, 31sylancr 590 . . 3 (∀𝑥𝐴 𝑅𝐵 → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
331, 32syl 17 . 2 (𝜑 → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
3425, 33eqtrd 2859 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  ∀wral 3132  ⦋csb 3865   ↦ cmpt 5127   ∘ ccom 5540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344 This theorem is referenced by:  fmptcos  6874  yonedalem3b  17518  gsumcom2  19084  evl1sca  20483  cnmptk1  22275  cnmpt1k  22276  cnmptkk  22277  cncfcompt2  23502  cncfmpt1f  23508  copco  23612  pcoass  23618  sincn  25028  coscn  25029  lgseisenlem3  25950  fcomptf  30400  eulerpartgbij  31648
 Copyright terms: Public domain W3C validator