MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcof Structured version   Visualization version   GIF version

Theorem fmptcof 7164
Description: Version of fmptco 7163 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptcof.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptcof (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcof
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . . . . 5 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 nfcsb1v 3946 . . . . . . 7 𝑥𝑧 / 𝑥𝑅
32nfel1 2925 . . . . . 6 𝑥𝑧 / 𝑥𝑅𝐵
4 csbeq1a 3935 . . . . . . 7 (𝑥 = 𝑧𝑅 = 𝑧 / 𝑥𝑅)
54eleq1d 2829 . . . . . 6 (𝑥 = 𝑧 → (𝑅𝐵𝑧 / 𝑥𝑅𝐵))
63, 5rspc 3623 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴 𝑅𝐵𝑧 / 𝑥𝑅𝐵))
71, 6mpan9 506 . . . 4 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝑅𝐵)
8 fmptcof.2 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝑅))
9 nfcv 2908 . . . . . 6 𝑧𝑅
109, 2, 4cbvmpt 5277 . . . . 5 (𝑥𝐴𝑅) = (𝑧𝐴𝑧 / 𝑥𝑅)
118, 10eqtrdi 2796 . . . 4 (𝜑𝐹 = (𝑧𝐴𝑧 / 𝑥𝑅))
12 fmptcof.3 . . . . 5 (𝜑𝐺 = (𝑦𝐵𝑆))
13 nfcv 2908 . . . . . 6 𝑤𝑆
14 nfcsb1v 3946 . . . . . 6 𝑦𝑤 / 𝑦𝑆
15 csbeq1a 3935 . . . . . 6 (𝑦 = 𝑤𝑆 = 𝑤 / 𝑦𝑆)
1613, 14, 15cbvmpt 5277 . . . . 5 (𝑦𝐵𝑆) = (𝑤𝐵𝑤 / 𝑦𝑆)
1712, 16eqtrdi 2796 . . . 4 (𝜑𝐺 = (𝑤𝐵𝑤 / 𝑦𝑆))
18 csbeq1 3924 . . . 4 (𝑤 = 𝑧 / 𝑥𝑅𝑤 / 𝑦𝑆 = 𝑧 / 𝑥𝑅 / 𝑦𝑆)
197, 11, 17, 18fmptco 7163 . . 3 (𝜑 → (𝐺𝐹) = (𝑧𝐴𝑧 / 𝑥𝑅 / 𝑦𝑆))
20 nfcv 2908 . . . 4 𝑧𝑅 / 𝑦𝑆
21 nfcv 2908 . . . . 5 𝑥𝑆
222, 21nfcsbw 3948 . . . 4 𝑥𝑧 / 𝑥𝑅 / 𝑦𝑆
234csbeq1d 3925 . . . 4 (𝑥 = 𝑧𝑅 / 𝑦𝑆 = 𝑧 / 𝑥𝑅 / 𝑦𝑆)
2420, 22, 23cbvmpt 5277 . . 3 (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑧𝐴𝑧 / 𝑥𝑅 / 𝑦𝑆)
2519, 24eqtr4di 2798 . 2 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
26 eqid 2740 . . . 4 𝐴 = 𝐴
27 nfcvd 2909 . . . . . 6 (𝑅𝐵𝑦𝑇)
28 fmptcof.4 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
2927, 28csbiegf 3955 . . . . 5 (𝑅𝐵𝑅 / 𝑦𝑆 = 𝑇)
3029ralimi 3089 . . . 4 (∀𝑥𝐴 𝑅𝐵 → ∀𝑥𝐴 𝑅 / 𝑦𝑆 = 𝑇)
31 mpteq12 5258 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝑅 / 𝑦𝑆 = 𝑇) → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
3226, 30, 31sylancr 586 . . 3 (∀𝑥𝐴 𝑅𝐵 → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
331, 32syl 17 . 2 (𝜑 → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
3425, 33eqtrd 2780 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  csb 3921  cmpt 5249  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  fmptcos  7165  yonedalem3b  18349  gsumcom2  20017  evl1sca  22359  cnmptk1  23710  cnmpt1k  23711  cnmptkk  23712  cncfcompt2  24953  cncfmpt1f  24959  copco  25070  pcoass  25076  sincn  26506  coscn  26507  lgseisenlem3  27439  fcomptf  32676  eulerpartgbij  34337
  Copyright terms: Public domain W3C validator