Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bddiblnc Structured version   Visualization version   GIF version

Theorem bddiblnc 33790
Description: Choice-free proof of bddibl 23818. (Contributed by Brendan Leahy, 2-Nov-2017.) (Revised by Brendan Leahy, 6-Nov-2017.)
Assertion
Ref Expression
bddiblnc ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem bddiblnc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbff 23604 . . . 4 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
21feqmptd 6468 . . 3 (𝐹 ∈ MblFn → 𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
323ad2ant1 1156 . 2 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
4 rzal 4266 . . . . . . . 8 (dom 𝐹 = ∅ → ∀𝑧 ∈ dom 𝐹(𝐹𝑧) = 0)
5 mpteq12 4928 . . . . . . . 8 ((dom 𝐹 = ∅ ∧ ∀𝑧 ∈ dom 𝐹(𝐹𝑧) = 0) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) = (𝑧 ∈ ∅ ↦ 0))
64, 5mpdan 670 . . . . . . 7 (dom 𝐹 = ∅ → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) = (𝑧 ∈ ∅ ↦ 0))
7 fconstmpt 5361 . . . . . . . 8 (∅ × {0}) = (𝑧 ∈ ∅ ↦ 0)
8 0mbl 23518 . . . . . . . . 9 ∅ ∈ dom vol
9 ibl0 23765 . . . . . . . . 9 (∅ ∈ dom vol → (∅ × {0}) ∈ 𝐿1)
108, 9ax-mp 5 . . . . . . . 8 (∅ × {0}) ∈ 𝐿1
117, 10eqeltrri 2880 . . . . . . 7 (𝑧 ∈ ∅ ↦ 0) ∈ 𝐿1
126, 11syl6eqel 2891 . . . . . 6 (dom 𝐹 = ∅ → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
1312adantl 469 . . . . 5 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 = ∅) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
14 r19.2z 4253 . . . . . . . . . 10 ((dom 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → ∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
1514anim1i 604 . . . . . . . . 9 (((dom 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ))
1615an31s 636 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ dom 𝐹 ≠ ∅) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ))
171ad2antrr 708 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐹:dom 𝐹⟶ℂ)
1817ffvelrnda 6579 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ℂ)
1918absge0d 14404 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 0 ≤ (abs‘(𝐹𝑦)))
20 0red 10326 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 0 ∈ ℝ)
2118abscld 14396 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → (abs‘(𝐹𝑦)) ∈ ℝ)
22 simplr 776 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
23 letr 10414 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (abs‘(𝐹𝑦)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((0 ≤ (abs‘(𝐹𝑦)) ∧ (abs‘(𝐹𝑦)) ≤ 𝑥) → 0 ≤ 𝑥))
2420, 21, 22, 23syl3anc 1483 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → ((0 ≤ (abs‘(𝐹𝑦)) ∧ (abs‘(𝐹𝑦)) ≤ 𝑥) → 0 ≤ 𝑥))
2519, 24mpand 678 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → ((abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥))
2625rexlimdva 3217 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥))
2726ex 399 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (𝑥 ∈ ℝ → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥)))
2827com23 86 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝑥 ∈ ℝ → 0 ≤ 𝑥)))
2928imp32 407 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ)) → 0 ≤ 𝑥)
3016, 29sylan2 582 . . . . . . 7 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ dom 𝐹 ≠ ∅)) → 0 ≤ 𝑥)
3130anassrs 455 . . . . . 6 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 ≠ ∅) → 0 ≤ 𝑥)
32 an32 628 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 0 ≤ 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥))
33 id 22 . . . . . . . . . . 11 (𝐹 ∈ MblFn → 𝐹 ∈ MblFn)
342, 33eqeltrrd 2884 . . . . . . . . . 10 (𝐹 ∈ MblFn → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn)
3534ad2antrr 708 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn)
361ad3antrrr 712 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → 𝐹:dom 𝐹⟶ℂ)
3736ffvelrnda 6579 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
3837recld 14155 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ)
3938rexrd 10372 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ*)
4039adantrr 699 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → (ℜ‘(𝐹𝑧)) ∈ ℝ*)
41 simprr 780 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → 0 ≤ (ℜ‘(𝐹𝑧)))
42 elxrge0 12499 . . . . . . . . . . . . . 14 ((ℜ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐹𝑧))))
4340, 41, 42sylanbrc 574 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → (ℜ‘(𝐹𝑧)) ∈ (0[,]+∞))
44 0e0iccpnf 12501 . . . . . . . . . . . . . 14 0 ∈ (0[,]+∞)
4544a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
4643, 45ifclda 4311 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
4746fmpttd 6605 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
48 mbfdm 23605 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
4948ad2antrr 708 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol)
50 simplr 776 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (vol‘dom 𝐹) ∈ ℝ)
51 elrege0 12496 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5251biimpri 219 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,)+∞))
5352ad2antrl 710 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ (0[,)+∞))
54 itg2const 23719 . . . . . . . . . . . . 13 ((dom 𝐹 ∈ dom vol ∧ (vol‘dom 𝐹) ∈ ℝ ∧ 𝑥 ∈ (0[,)+∞)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) = (𝑥 · (vol‘dom 𝐹)))
5549, 50, 53, 54syl3anc 1483 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) = (𝑥 · (vol‘dom 𝐹)))
56 simprll 788 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ)
5756, 50remulcld 10353 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑥 · (vol‘dom 𝐹)) ∈ ℝ)
5855, 57eqeltrd 2883 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ)
59 rexr 10368 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
60 elxrge0 12499 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
6160biimpri 219 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,]+∞))
6259, 61sylan 571 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,]+∞))
6362ad2antrl 710 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ (0[,]+∞))
6463adantr 468 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ (0[,]+∞))
65 ifcl 4321 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) ∈ (0[,]+∞))
6664, 44, 65sylancl 576 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) ∈ (0[,]+∞))
6766fmpttd 6605 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞))
68 ifan 4328 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0)
691ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ)
7069ffvelrnda 6579 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
7170recld 14155 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ)
7270abscld 14396 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ∈ ℝ)
7356adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
7470releabsd 14411 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
75 2fveq3 6411 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑧)))
7675breq1d 4852 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((abs‘(𝐹𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹𝑧)) ≤ 𝑥))
7776rspccva 3499 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
7877adantll 696 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
7978adantll 696 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
8071, 72, 73, 74, 79letrd 10477 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ≤ 𝑥)
81 simprlr 789 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 0 ≤ 𝑥)
8281adantr 468 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → 0 ≤ 𝑥)
83 breq1 4845 . . . . . . . . . . . . . . . . . . . 20 ((ℜ‘(𝐹𝑧)) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) → ((ℜ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
84 breq1 4845 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
8583, 84ifboth 4315 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
8680, 82, 85syl2anc 575 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
87 iftrue 4283 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0))
8887adantl 469 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0))
89 iftrue 4283 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 𝑥)
9089adantl 469 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 𝑥)
9186, 88, 903brtr4d 4874 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9291ex 399 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
93 0le0 11391 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
9493a1i 11 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → 0 ≤ 0)
95 iffalse 4286 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = 0)
96 iffalse 4286 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 0)
9794, 95, 963brtr4d 4874 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9892, 97pm2.61d1 172 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9968, 98syl5eqbr 4877 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
10099ralrimivw 3153 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
101 reex 10310 . . . . . . . . . . . . . . 15 ℝ ∈ V
102101a1i 11 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ℝ ∈ V)
103 eqidd 2805 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)))
104 eqidd 2805 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
105102, 46, 66, 103, 104ofrfval2 7143 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
106100, 105mpbird 248 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
107 itg2le 23718 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
10847, 67, 106, 107syl3anc 1483 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
109 itg2lecl 23717 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
11047, 58, 108, 109syl3anc 1483 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
11138renegcld 10740 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ)
112111rexrd 10372 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ*)
113112adantrr 699 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → -(ℜ‘(𝐹𝑧)) ∈ ℝ*)
114 simprr 780 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → 0 ≤ -(ℜ‘(𝐹𝑧)))
115 elxrge0 12499 . . . . . . . . . . . . . 14 (-(ℜ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ (-(ℜ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ -(ℜ‘(𝐹𝑧))))
116113, 114, 115sylanbrc 574 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → -(ℜ‘(𝐹𝑧)) ∈ (0[,]+∞))
11744a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
118116, 117ifclda 4311 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
119118fmpttd 6605 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
120 ifan 4328 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0)
12171renegcld 10740 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ)
12271recnd 10351 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℂ)
123122abscld 14396 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℜ‘(𝐹𝑧))) ∈ ℝ)
124121leabsd 14374 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘-(ℜ‘(𝐹𝑧))))
125122absnegd 14409 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘-(ℜ‘(𝐹𝑧))) = (abs‘(ℜ‘(𝐹𝑧))))
126124, 125breqtrd 4868 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘(ℜ‘(𝐹𝑧))))
127 absrele 14269 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑧) ∈ ℂ → (abs‘(ℜ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
12870, 127syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℜ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
129121, 123, 72, 126, 128letrd 10477 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
130121, 72, 73, 129, 79letrd 10477 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ 𝑥)
131 breq1 4845 . . . . . . . . . . . . . . . . . . . 20 (-(ℜ‘(𝐹𝑧)) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) → (-(ℜ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
132 breq1 4845 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
133131, 132ifboth 4315 . . . . . . . . . . . . . . . . . . 19 ((-(ℜ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
134130, 82, 133syl2anc 575 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
135 iftrue 4283 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0))
136135adantl 469 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0))
137134, 136, 903brtr4d 4874 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
138137ex 399 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
139 iffalse 4286 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = 0)
14094, 139, 963brtr4d 4874 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
141138, 140pm2.61d1 172 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
142120, 141syl5eqbr 4877 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
143142ralrimivw 3153 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
144 eqidd 2805 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)))
145102, 118, 66, 144, 104ofrfval2 7143 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
146143, 145mpbird 248 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
147 itg2le 23718 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
148119, 67, 146, 147syl3anc 1483 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
149 itg2lecl 23717 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
150119, 58, 148, 149syl3anc 1483 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
151110, 150jca 503 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ))
15237imcld 14156 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ)
153152rexrd 10372 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ*)
154153adantrr 699 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → (ℑ‘(𝐹𝑧)) ∈ ℝ*)
155 simprr 780 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → 0 ≤ (ℑ‘(𝐹𝑧)))
156 elxrge0 12499 . . . . . . . . . . . . . 14 ((ℑ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ ((ℑ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ (ℑ‘(𝐹𝑧))))
157154, 155, 156sylanbrc 574 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → (ℑ‘(𝐹𝑧)) ∈ (0[,]+∞))
15844a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
159157, 158ifclda 4311 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
160159fmpttd 6605 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
161 ifan 4328 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0)
16270imcld 14156 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ)
163162recnd 10351 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℂ)
164163abscld 14396 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℑ‘(𝐹𝑧))) ∈ ℝ)
165162leabsd 14374 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ (abs‘(ℑ‘(𝐹𝑧))))
166 absimle 14270 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑧) ∈ ℂ → (abs‘(ℑ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
16770, 166syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℑ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
168162, 164, 72, 165, 167letrd 10477 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
169162, 72, 73, 168, 79letrd 10477 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ 𝑥)
170 breq1 4845 . . . . . . . . . . . . . . . . . . . 20 ((ℑ‘(𝐹𝑧)) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) → ((ℑ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
171 breq1 4845 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
172170, 171ifboth 4315 . . . . . . . . . . . . . . . . . . 19 (((ℑ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
173169, 82, 172syl2anc 575 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
174 iftrue 4283 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0))
175174adantl 469 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0))
176173, 175, 903brtr4d 4874 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
177176ex 399 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
178 iffalse 4286 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = 0)
17994, 178, 963brtr4d 4874 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
180177, 179pm2.61d1 172 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
181161, 180syl5eqbr 4877 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
182181ralrimivw 3153 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
183 eqidd 2805 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)))
184102, 159, 66, 183, 104ofrfval2 7143 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
185182, 184mpbird 248 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
186 itg2le 23718 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
187160, 67, 185, 186syl3anc 1483 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
188 itg2lecl 23717 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
189160, 58, 187, 188syl3anc 1483 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
190152renegcld 10740 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ)
191190rexrd 10372 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ*)
192191adantrr 699 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → -(ℑ‘(𝐹𝑧)) ∈ ℝ*)
193 simprr 780 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → 0 ≤ -(ℑ‘(𝐹𝑧)))
194 elxrge0 12499 . . . . . . . . . . . . . 14 (-(ℑ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ (-(ℑ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ -(ℑ‘(𝐹𝑧))))
195192, 193, 194sylanbrc 574 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → -(ℑ‘(𝐹𝑧)) ∈ (0[,]+∞))
19644a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
197195, 196ifclda 4311 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
198197fmpttd 6605 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
199 ifan 4328 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0)
200162renegcld 10740 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ)
201200leabsd 14374 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘-(ℑ‘(𝐹𝑧))))
202163absnegd 14409 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘-(ℑ‘(𝐹𝑧))) = (abs‘(ℑ‘(𝐹𝑧))))
203201, 202breqtrd 4868 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘(ℑ‘(𝐹𝑧))))
204200, 164, 72, 203, 167letrd 10477 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
205200, 72, 73, 204, 79letrd 10477 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ 𝑥)
206 breq1 4845 . . . . . . . . . . . . . . . . . . . 20 (-(ℑ‘(𝐹𝑧)) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) → (-(ℑ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
207 breq1 4845 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
208206, 207ifboth 4315 . . . . . . . . . . . . . . . . . . 19 ((-(ℑ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
209205, 82, 208syl2anc 575 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
210 iftrue 4283 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0))
211210adantl 469 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0))
212209, 211, 903brtr4d 4874 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
213212ex 399 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
214 iffalse 4286 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = 0)
21594, 214, 963brtr4d 4874 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
216213, 215pm2.61d1 172 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
217199, 216syl5eqbr 4877 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
218217ralrimivw 3153 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
219 eqidd 2805 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)))
220102, 197, 66, 219, 104ofrfval2 7143 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
221218, 220mpbird 248 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
222 itg2le 23718 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘𝑟 ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
223198, 67, 221, 222syl3anc 1483 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
224 itg2lecl 23717 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
225198, 58, 223, 224syl3anc 1483 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
226189, 225jca 503 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ))
227 eqid 2804 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)))
228 eqid 2804 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)))
229 eqid 2804 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)))
230 eqid 2804 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)))
231227, 228, 229, 230, 70iblcnlem1 23766 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1 ↔ ((𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn ∧ ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ))))
23235, 151, 226, 231mpbir3and 1435 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23332, 232sylan2b 583 . . . . . . 7 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 0 ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
234233anassrs 455 . . . . . 6 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 0 ≤ 𝑥) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23531, 234syldan 581 . . . . 5 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 ≠ ∅) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23613, 235pm2.61dane 3063 . . . 4 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
237236rexlimdvaa 3218 . . 3 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1))
2382373impia 1138 . 2 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
2393, 238eqeltrd 2883 1 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2976  wral 3094  wrex 3095  Vcvv 3389  c0 4114  ifcif 4277  {csn 4368   class class class wbr 4842  cmpt 4921   × cxp 5307  dom cdm 5309  wf 6095  cfv 6099  (class class class)co 6872  𝑟 cofr 7124  cc 10217  cr 10218  0cc0 10219   · cmul 10224  +∞cpnf 10354  *cxr 10356  cle 10358  -cneg 10550  [,)cico 12393  [,]cicc 12394  cre 14058  cim 14059  abscabs 14195  volcvol 23442  MblFncmbf 23593  2citg2 23595  𝐿1cibl 23596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-inf2 8783  ax-cnex 10275  ax-resscn 10276  ax-1cn 10277  ax-icn 10278  ax-addcl 10279  ax-addrcl 10280  ax-mulcl 10281  ax-mulrcl 10282  ax-mulcom 10283  ax-addass 10284  ax-mulass 10285  ax-distr 10286  ax-i2m1 10287  ax-1ne0 10288  ax-1rid 10289  ax-rnegex 10290  ax-rrecex 10291  ax-cnre 10292  ax-pre-lttri 10293  ax-pre-lttrn 10294  ax-pre-ltadd 10295  ax-pre-mulgt0 10296  ax-pre-sup 10297  ax-addf 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-nel 3080  df-ral 3099  df-rex 3100  df-reu 3101  df-rmo 3102  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-disj 4811  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5217  df-eprel 5222  df-po 5230  df-so 5231  df-fr 5268  df-se 5269  df-we 5270  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-pred 5891  df-ord 5937  df-on 5938  df-lim 5939  df-suc 5940  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6833  df-ov 6875  df-oprab 6876  df-mpt2 6877  df-of 7125  df-ofr 7126  df-om 7294  df-1st 7396  df-2nd 7397  df-wrecs 7640  df-recs 7702  df-rdg 7740  df-1o 7794  df-2o 7795  df-oadd 7798  df-er 7977  df-map 8092  df-pm 8093  df-en 8191  df-dom 8192  df-sdom 8193  df-fin 8194  df-sup 8585  df-inf 8586  df-oi 8652  df-card 9046  df-cda 9273  df-pnf 10359  df-mnf 10360  df-xr 10361  df-ltxr 10362  df-le 10363  df-sub 10551  df-neg 10552  df-div 10968  df-nn 11304  df-2 11362  df-3 11363  df-n0 11558  df-z 11642  df-uz 11903  df-q 12006  df-rp 12045  df-xadd 12161  df-ioo 12395  df-ico 12397  df-icc 12398  df-fz 12548  df-fzo 12688  df-fl 12815  df-seq 13023  df-exp 13082  df-hash 13336  df-cj 14060  df-re 14061  df-im 14062  df-sqrt 14196  df-abs 14197  df-clim 14440  df-sum 14638  df-xmet 19945  df-met 19946  df-ovol 23443  df-vol 23444  df-mbf 23598  df-itg1 23599  df-itg2 23600  df-ibl 23601  df-0p 23649
This theorem is referenced by:  cnicciblnc  33791
  Copyright terms: Public domain W3C validator