MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddiblnc Structured version   Visualization version   GIF version

Theorem bddiblnc 24423
Description: Choice-free proof of bddibl 24421. (Contributed by Brendan Leahy, 2-Nov-2017.) (Revised by Brendan Leahy, 6-Nov-2017.)
Assertion
Ref Expression
bddiblnc ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem bddiblnc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbff 24207 . . . 4 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
21feqmptd 6706 . . 3 (𝐹 ∈ MblFn → 𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
323ad2ant1 1130 . 2 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
4 rzal 4426 . . . . . . . 8 (dom 𝐹 = ∅ → ∀𝑧 ∈ dom 𝐹(𝐹𝑧) = 0)
5 mpteq12 5126 . . . . . . . 8 ((dom 𝐹 = ∅ ∧ ∀𝑧 ∈ dom 𝐹(𝐹𝑧) = 0) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) = (𝑧 ∈ ∅ ↦ 0))
64, 5mpdan 686 . . . . . . 7 (dom 𝐹 = ∅ → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) = (𝑧 ∈ ∅ ↦ 0))
7 fconstmpt 5587 . . . . . . . 8 (∅ × {0}) = (𝑧 ∈ ∅ ↦ 0)
8 0mbl 24121 . . . . . . . . 9 ∅ ∈ dom vol
9 ibl0 24368 . . . . . . . . 9 (∅ ∈ dom vol → (∅ × {0}) ∈ 𝐿1)
108, 9ax-mp 5 . . . . . . . 8 (∅ × {0}) ∈ 𝐿1
117, 10eqeltrri 2909 . . . . . . 7 (𝑧 ∈ ∅ ↦ 0) ∈ 𝐿1
126, 11eqeltrdi 2920 . . . . . 6 (dom 𝐹 = ∅ → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
1312adantl 485 . . . . 5 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 = ∅) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
14 r19.2z 4413 . . . . . . . . . 10 ((dom 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → ∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
1514anim1i 617 . . . . . . . . 9 (((dom 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ))
1615an31s 653 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ dom 𝐹 ≠ ∅) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ))
171ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐹:dom 𝐹⟶ℂ)
1817ffvelrnda 6824 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ℂ)
1918absge0d 14783 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 0 ≤ (abs‘(𝐹𝑦)))
20 0red 10621 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 0 ∈ ℝ)
2118abscld 14775 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → (abs‘(𝐹𝑦)) ∈ ℝ)
22 simplr 768 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
23 letr 10711 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (abs‘(𝐹𝑦)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((0 ≤ (abs‘(𝐹𝑦)) ∧ (abs‘(𝐹𝑦)) ≤ 𝑥) → 0 ≤ 𝑥))
2420, 21, 22, 23syl3anc 1368 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → ((0 ≤ (abs‘(𝐹𝑦)) ∧ (abs‘(𝐹𝑦)) ≤ 𝑥) → 0 ≤ 𝑥))
2519, 24mpand 694 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → ((abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥))
2625rexlimdva 3270 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥))
2726ex 416 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (𝑥 ∈ ℝ → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥)))
2827com23 86 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝑥 ∈ ℝ → 0 ≤ 𝑥)))
2928imp32 422 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ)) → 0 ≤ 𝑥)
3016, 29sylan2 595 . . . . . . 7 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ dom 𝐹 ≠ ∅)) → 0 ≤ 𝑥)
3130anassrs 471 . . . . . 6 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 ≠ ∅) → 0 ≤ 𝑥)
32 an32 645 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 0 ≤ 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥))
33 id 22 . . . . . . . . . . 11 (𝐹 ∈ MblFn → 𝐹 ∈ MblFn)
342, 33eqeltrrd 2913 . . . . . . . . . 10 (𝐹 ∈ MblFn → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn)
3534ad2antrr 725 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn)
361ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → 𝐹:dom 𝐹⟶ℂ)
3736ffvelrnda 6824 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
3837recld 14532 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ)
3938rexrd 10668 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ*)
4039adantrr 716 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → (ℜ‘(𝐹𝑧)) ∈ ℝ*)
41 simprr 772 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → 0 ≤ (ℜ‘(𝐹𝑧)))
42 elxrge0 12825 . . . . . . . . . . . . . 14 ((ℜ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐹𝑧))))
4340, 41, 42sylanbrc 586 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → (ℜ‘(𝐹𝑧)) ∈ (0[,]+∞))
44 0e0iccpnf 12827 . . . . . . . . . . . . . 14 0 ∈ (0[,]+∞)
4544a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
4643, 45ifclda 4474 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
4746fmpttd 6852 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
48 mbfdm 24208 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
4948ad2antrr 725 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol)
50 simplr 768 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (vol‘dom 𝐹) ∈ ℝ)
51 elrege0 12822 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5251biimpri 231 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,)+∞))
5352ad2antrl 727 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ (0[,)+∞))
54 itg2const 24322 . . . . . . . . . . . . 13 ((dom 𝐹 ∈ dom vol ∧ (vol‘dom 𝐹) ∈ ℝ ∧ 𝑥 ∈ (0[,)+∞)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) = (𝑥 · (vol‘dom 𝐹)))
5549, 50, 53, 54syl3anc 1368 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) = (𝑥 · (vol‘dom 𝐹)))
56 simprll 778 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ)
5756, 50remulcld 10648 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑥 · (vol‘dom 𝐹)) ∈ ℝ)
5855, 57eqeltrd 2912 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ)
59 rexr 10664 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
60 elxrge0 12825 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
6160biimpri 231 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,]+∞))
6259, 61sylan 583 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,]+∞))
6362ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ (0[,]+∞))
6463adantr 484 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ (0[,]+∞))
65 ifcl 4484 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) ∈ (0[,]+∞))
6664, 44, 65sylancl 589 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) ∈ (0[,]+∞))
6766fmpttd 6852 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞))
68 ifan 4491 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0)
691ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ)
7069ffvelrnda 6824 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
7170recld 14532 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ)
7270abscld 14775 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ∈ ℝ)
7356adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
7470releabsd 14790 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
75 2fveq3 6648 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑧)))
7675breq1d 5049 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((abs‘(𝐹𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹𝑧)) ≤ 𝑥))
7776rspccva 3599 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
7877adantll 713 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
7978adantll 713 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
8071, 72, 73, 74, 79letrd 10774 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ≤ 𝑥)
81 simprlr 779 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 0 ≤ 𝑥)
8281adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → 0 ≤ 𝑥)
83 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 ((ℜ‘(𝐹𝑧)) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) → ((ℜ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
84 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
8583, 84ifboth 4478 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
8680, 82, 85syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
87 iftrue 4446 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0))
8887adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0))
89 iftrue 4446 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 𝑥)
9089adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 𝑥)
9186, 88, 903brtr4d 5071 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9291ex 416 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
93 0le0 11716 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
9493a1i 11 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → 0 ≤ 0)
95 iffalse 4449 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = 0)
96 iffalse 4449 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 0)
9794, 95, 963brtr4d 5071 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9892, 97pm2.61d1 183 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9968, 98eqbrtrid 5074 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
10099ralrimivw 3171 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
101 reex 10605 . . . . . . . . . . . . . . 15 ℝ ∈ V
102101a1i 11 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ℝ ∈ V)
103 eqidd 2822 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)))
104 eqidd 2822 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
105102, 46, 66, 103, 104ofrfval2 7402 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
106100, 105mpbird 260 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
107 itg2le 24321 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
10847, 67, 106, 107syl3anc 1368 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
109 itg2lecl 24320 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
11047, 58, 108, 109syl3anc 1368 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
11138renegcld 11044 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ)
112111rexrd 10668 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ*)
113112adantrr 716 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → -(ℜ‘(𝐹𝑧)) ∈ ℝ*)
114 simprr 772 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → 0 ≤ -(ℜ‘(𝐹𝑧)))
115 elxrge0 12825 . . . . . . . . . . . . . 14 (-(ℜ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ (-(ℜ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ -(ℜ‘(𝐹𝑧))))
116113, 114, 115sylanbrc 586 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → -(ℜ‘(𝐹𝑧)) ∈ (0[,]+∞))
11744a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
118116, 117ifclda 4474 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
119118fmpttd 6852 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
120 ifan 4491 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0)
12171renegcld 11044 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ)
12271recnd 10646 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℂ)
123122abscld 14775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℜ‘(𝐹𝑧))) ∈ ℝ)
124121leabsd 14753 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘-(ℜ‘(𝐹𝑧))))
125122absnegd 14788 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘-(ℜ‘(𝐹𝑧))) = (abs‘(ℜ‘(𝐹𝑧))))
126124, 125breqtrd 5065 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘(ℜ‘(𝐹𝑧))))
127 absrele 14647 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑧) ∈ ℂ → (abs‘(ℜ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
12870, 127syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℜ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
129121, 123, 72, 126, 128letrd 10774 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
130121, 72, 73, 129, 79letrd 10774 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ 𝑥)
131 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 (-(ℜ‘(𝐹𝑧)) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) → (-(ℜ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
132 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
133131, 132ifboth 4478 . . . . . . . . . . . . . . . . . . 19 ((-(ℜ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
134130, 82, 133syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
135 iftrue 4446 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0))
136135adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0))
137134, 136, 903brtr4d 5071 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
138137ex 416 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
139 iffalse 4449 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = 0)
14094, 139, 963brtr4d 5071 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
141138, 140pm2.61d1 183 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
142120, 141eqbrtrid 5074 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
143142ralrimivw 3171 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
144 eqidd 2822 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)))
145102, 118, 66, 144, 104ofrfval2 7402 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
146143, 145mpbird 260 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
147 itg2le 24321 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
148119, 67, 146, 147syl3anc 1368 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
149 itg2lecl 24320 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
150119, 58, 148, 149syl3anc 1368 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
151110, 150jca 515 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ))
15237imcld 14533 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ)
153152rexrd 10668 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ*)
154153adantrr 716 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → (ℑ‘(𝐹𝑧)) ∈ ℝ*)
155 simprr 772 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → 0 ≤ (ℑ‘(𝐹𝑧)))
156 elxrge0 12825 . . . . . . . . . . . . . 14 ((ℑ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ ((ℑ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ (ℑ‘(𝐹𝑧))))
157154, 155, 156sylanbrc 586 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → (ℑ‘(𝐹𝑧)) ∈ (0[,]+∞))
15844a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
159157, 158ifclda 4474 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
160159fmpttd 6852 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
161 ifan 4491 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0)
16270imcld 14533 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ)
163162recnd 10646 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℂ)
164163abscld 14775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℑ‘(𝐹𝑧))) ∈ ℝ)
165162leabsd 14753 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ (abs‘(ℑ‘(𝐹𝑧))))
166 absimle 14648 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑧) ∈ ℂ → (abs‘(ℑ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
16770, 166syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℑ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
168162, 164, 72, 165, 167letrd 10774 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
169162, 72, 73, 168, 79letrd 10774 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ 𝑥)
170 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 ((ℑ‘(𝐹𝑧)) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) → ((ℑ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
171 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
172170, 171ifboth 4478 . . . . . . . . . . . . . . . . . . 19 (((ℑ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
173169, 82, 172syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
174 iftrue 4446 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0))
175174adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0))
176173, 175, 903brtr4d 5071 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
177176ex 416 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
178 iffalse 4449 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = 0)
17994, 178, 963brtr4d 5071 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
180177, 179pm2.61d1 183 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
181161, 180eqbrtrid 5074 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
182181ralrimivw 3171 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
183 eqidd 2822 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)))
184102, 159, 66, 183, 104ofrfval2 7402 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
185182, 184mpbird 260 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
186 itg2le 24321 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
187160, 67, 185, 186syl3anc 1368 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
188 itg2lecl 24320 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
189160, 58, 187, 188syl3anc 1368 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
190152renegcld 11044 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ)
191190rexrd 10668 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ*)
192191adantrr 716 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → -(ℑ‘(𝐹𝑧)) ∈ ℝ*)
193 simprr 772 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → 0 ≤ -(ℑ‘(𝐹𝑧)))
194 elxrge0 12825 . . . . . . . . . . . . . 14 (-(ℑ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ (-(ℑ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ -(ℑ‘(𝐹𝑧))))
195192, 193, 194sylanbrc 586 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → -(ℑ‘(𝐹𝑧)) ∈ (0[,]+∞))
19644a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
197195, 196ifclda 4474 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
198197fmpttd 6852 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
199 ifan 4491 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0)
200162renegcld 11044 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ)
201200leabsd 14753 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘-(ℑ‘(𝐹𝑧))))
202163absnegd 14788 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘-(ℑ‘(𝐹𝑧))) = (abs‘(ℑ‘(𝐹𝑧))))
203201, 202breqtrd 5065 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘(ℑ‘(𝐹𝑧))))
204200, 164, 72, 203, 167letrd 10774 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
205200, 72, 73, 204, 79letrd 10774 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ 𝑥)
206 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 (-(ℑ‘(𝐹𝑧)) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) → (-(ℑ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
207 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
208206, 207ifboth 4478 . . . . . . . . . . . . . . . . . . 19 ((-(ℑ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
209205, 82, 208syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
210 iftrue 4446 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0))
211210adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0))
212209, 211, 903brtr4d 5071 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
213212ex 416 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
214 iffalse 4449 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = 0)
21594, 214, 963brtr4d 5071 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
216213, 215pm2.61d1 183 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
217199, 216eqbrtrid 5074 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
218217ralrimivw 3171 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
219 eqidd 2822 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)))
220102, 197, 66, 219, 104ofrfval2 7402 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
221218, 220mpbird 260 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
222 itg2le 24321 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
223198, 67, 221, 222syl3anc 1368 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
224 itg2lecl 24320 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
225198, 58, 223, 224syl3anc 1368 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
226189, 225jca 515 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ))
227 eqid 2821 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)))
228 eqid 2821 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)))
229 eqid 2821 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)))
230 eqid 2821 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)))
231227, 228, 229, 230, 70iblcnlem1 24369 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1 ↔ ((𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn ∧ ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ))))
23235, 151, 226, 231mpbir3and 1339 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23332, 232sylan2b 596 . . . . . . 7 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 0 ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
234233anassrs 471 . . . . . 6 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 0 ≤ 𝑥) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23531, 234syldan 594 . . . . 5 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 ≠ ∅) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23613, 235pm2.61dane 3094 . . . 4 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
237236rexlimdvaa 3271 . . 3 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1))
2382373impia 1114 . 2 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
2393, 238eqeltrd 2912 1 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wral 3126  wrex 3127  Vcvv 3471  c0 4266  ifcif 4440  {csn 4540   class class class wbr 5039  cmpt 5119   × cxp 5526  dom cdm 5528  wf 6324  cfv 6328  (class class class)co 7130  r cofr 7383  cc 10512  cr 10513  0cc0 10514   · cmul 10519  +∞cpnf 10649  *cxr 10651  cle 10653  -cneg 10848  [,)cico 12718  [,]cicc 12719  cre 14435  cim 14436  abscabs 14572  volcvol 24045  MblFncmbf 24196  2citg2 24198  𝐿1cibl 24199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-ofr 7385  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-xadd 12486  df-ioo 12720  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-sum 15022  df-xmet 20513  df-met 20514  df-ovol 24046  df-vol 24047  df-mbf 24201  df-itg1 24202  df-itg2 24203  df-ibl 24204  df-0p 24252
This theorem is referenced by:  cnicciblnc  24424
  Copyright terms: Public domain W3C validator