Step | Hyp | Ref
| Expression |
1 | | mdetmul.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | mdetmul.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
3 | | eqid 2738 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
4 | | eqid 2738 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
5 | | eqid 2738 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
6 | | eqid 2738 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
7 | | mdetmul.t1 |
. . 3
⊢ · =
(.r‘𝑅) |
8 | 1, 2 | matrcl 21469 |
. . . . 5
⊢ (𝐹 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | simpld 494 |
. . . 4
⊢ (𝐹 ∈ 𝐵 → 𝑁 ∈ Fin) |
10 | 9 | 3ad2ant2 1132 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝑁 ∈ Fin) |
11 | | crngring 19710 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
12 | 11 | 3ad2ant1 1131 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ Ring) |
13 | | mdetmul.d |
. . . . . . . 8
⊢ 𝐷 = (𝑁 maDet 𝑅) |
14 | 13, 1, 2, 3 | mdetf 21652 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅)) |
15 | 14 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐷:𝐵⟶(Base‘𝑅)) |
16 | 15 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → 𝐷:𝐵⟶(Base‘𝑅)) |
17 | 1 | matring 21500 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
18 | 10, 12, 17 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐴 ∈ Ring) |
19 | 18 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → 𝐴 ∈ Ring) |
20 | | simpr 484 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
21 | | simpl3 1191 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
22 | | mdetmul.t2 |
. . . . . . 7
⊢ ∙ =
(.r‘𝐴) |
23 | 2, 22 | ringcl 19715 |
. . . . . 6
⊢ ((𝐴 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑎 ∙ 𝐺) ∈ 𝐵) |
24 | 19, 20, 21, 23 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → (𝑎 ∙ 𝐺) ∈ 𝐵) |
25 | 16, 24 | ffvelrnd 6944 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → (𝐷‘(𝑎 ∙ 𝐺)) ∈ (Base‘𝑅)) |
26 | 25 | fmpttd 6971 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺))):𝐵⟶(Base‘𝑅)) |
27 | | simp21 1204 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑏 ∈ 𝐵) |
28 | | fvoveq1 7278 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝐷‘(𝑎 ∙ 𝐺)) = (𝐷‘(𝑏 ∙ 𝐺))) |
29 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺))) = (𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺))) |
30 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐷‘(𝑏 ∙ 𝐺)) ∈ V |
31 | 28, 29, 30 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐵 → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝐷‘(𝑏 ∙ 𝐺))) |
32 | 27, 31 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝐷‘(𝑏 ∙ 𝐺))) |
33 | | simp11 1201 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑅 ∈ CRing) |
34 | 18 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) → 𝐴 ∈ Ring) |
35 | | simpr1 1192 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) → 𝑏 ∈ 𝐵) |
36 | | simpl3 1191 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) → 𝐺 ∈ 𝐵) |
37 | 2, 22 | ringcl 19715 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Ring ∧ 𝑏 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑏 ∙ 𝐺) ∈ 𝐵) |
38 | 34, 35, 36, 37 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) → (𝑏 ∙ 𝐺) ∈ 𝐵) |
39 | 38 | 3adant3 1130 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → (𝑏 ∙ 𝐺) ∈ 𝐵) |
40 | | simp22 1205 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑐 ∈ 𝑁) |
41 | | simp23 1206 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑑 ∈ 𝑁) |
42 | | simp3l 1199 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑐 ≠ 𝑑) |
43 | | simpl3r 1227 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) ∧ 𝑎 ∈ 𝑁) → ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒)) |
44 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ 𝑁 = 𝑁 |
45 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ ((𝑐𝑏𝑒) = (𝑑𝑏𝑒) → ((𝑐𝑏𝑒) · (𝑒𝐺𝑎)) = ((𝑑𝑏𝑒) · (𝑒𝐺𝑎))) |
46 | 45 | ralimi 3086 |
. . . . . . . . . . . 12
⊢
(∀𝑒 ∈
𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒) → ∀𝑒 ∈ 𝑁 ((𝑐𝑏𝑒) · (𝑒𝐺𝑎)) = ((𝑑𝑏𝑒) · (𝑒𝐺𝑎))) |
47 | | mpteq12 5162 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 𝑁 ∧ ∀𝑒 ∈ 𝑁 ((𝑐𝑏𝑒) · (𝑒𝐺𝑎)) = ((𝑑𝑏𝑒) · (𝑒𝐺𝑎))) → (𝑒 ∈ 𝑁 ↦ ((𝑐𝑏𝑒) · (𝑒𝐺𝑎))) = (𝑒 ∈ 𝑁 ↦ ((𝑑𝑏𝑒) · (𝑒𝐺𝑎)))) |
48 | 44, 46, 47 | sylancr 586 |
. . . . . . . . . . 11
⊢
(∀𝑒 ∈
𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒) → (𝑒 ∈ 𝑁 ↦ ((𝑐𝑏𝑒) · (𝑒𝐺𝑎))) = (𝑒 ∈ 𝑁 ↦ ((𝑑𝑏𝑒) · (𝑒𝐺𝑎)))) |
49 | 48 | oveq2d 7271 |
. . . . . . . . . 10
⊢
(∀𝑒 ∈
𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒) → (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑐𝑏𝑒) · (𝑒𝐺𝑎)))) = (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑑𝑏𝑒) · (𝑒𝐺𝑎))))) |
50 | 43, 49 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) ∧ 𝑎 ∈ 𝑁) → (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑐𝑏𝑒) · (𝑒𝐺𝑎)))) = (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑑𝑏𝑒) · (𝑒𝐺𝑎))))) |
51 | | simp1 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ CRing) |
52 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
53 | 1, 52 | matmulr 21495 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
54 | 53, 22 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = ∙ ) |
55 | 10, 51, 54 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = ∙ ) |
56 | 55 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = ∙ ) |
57 | 56 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → (𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) = (𝑏 ∙ 𝐺)) |
58 | 57 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → (𝑐(𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺)𝑎) = (𝑐(𝑏 ∙ 𝐺)𝑎)) |
59 | | simpll1 1210 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → 𝑅 ∈ CRing) |
60 | 10 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ Fin) |
61 | | simplr1 1213 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → 𝑏 ∈ 𝐵) |
62 | 1, 3, 2 | matbas2i 21479 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝐵 → 𝑏 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
63 | 61, 62 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → 𝑏 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
64 | 1, 3, 2 | matbas2i 21479 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ 𝐵 → 𝐺 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
65 | 64 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
66 | 65 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → 𝐺 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
67 | | simplr2 1214 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → 𝑐 ∈ 𝑁) |
68 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
69 | 52, 3, 7, 59, 60, 60, 60, 63, 66, 67, 68 | mamufv 21446 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → (𝑐(𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺)𝑎) = (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑐𝑏𝑒) · (𝑒𝐺𝑎))))) |
70 | 58, 69 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → (𝑐(𝑏 ∙ 𝐺)𝑎) = (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑐𝑏𝑒) · (𝑒𝐺𝑎))))) |
71 | 70 | 3adantl3 1166 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) ∧ 𝑎 ∈ 𝑁) → (𝑐(𝑏 ∙ 𝐺)𝑎) = (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑐𝑏𝑒) · (𝑒𝐺𝑎))))) |
72 | 57 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → (𝑑(𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺)𝑎) = (𝑑(𝑏 ∙ 𝐺)𝑎)) |
73 | | simplr3 1215 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → 𝑑 ∈ 𝑁) |
74 | 52, 3, 7, 59, 60, 60, 60, 63, 66, 73, 68 | mamufv 21446 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → (𝑑(𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺)𝑎) = (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑑𝑏𝑒) · (𝑒𝐺𝑎))))) |
75 | 72, 74 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) ∧ 𝑎 ∈ 𝑁) → (𝑑(𝑏 ∙ 𝐺)𝑎) = (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑑𝑏𝑒) · (𝑒𝐺𝑎))))) |
76 | 75 | 3adantl3 1166 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) ∧ 𝑎 ∈ 𝑁) → (𝑑(𝑏 ∙ 𝐺)𝑎) = (𝑅 Σg (𝑒 ∈ 𝑁 ↦ ((𝑑𝑏𝑒) · (𝑒𝐺𝑎))))) |
77 | 50, 71, 76 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) ∧ 𝑎 ∈ 𝑁) → (𝑐(𝑏 ∙ 𝐺)𝑎) = (𝑑(𝑏 ∙ 𝐺)𝑎)) |
78 | 77 | ralrimiva 3107 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ∀𝑎 ∈ 𝑁 (𝑐(𝑏 ∙ 𝐺)𝑎) = (𝑑(𝑏 ∙ 𝐺)𝑎)) |
79 | 13, 1, 2, 4, 33, 39, 40, 41, 42, 78 | mdetralt 21665 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → (𝐷‘(𝑏 ∙ 𝐺)) = (0g‘𝑅)) |
80 | 32, 79 | eqtrd 2778 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (0g‘𝑅)) |
81 | 80 | 3expia 1119 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) → ((𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒)) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (0g‘𝑅))) |
82 | 81 | ralrimivvva 3115 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝑁 ∀𝑑 ∈ 𝑁 ((𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒)) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (0g‘𝑅))) |
83 | | simp11 1201 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑅 ∈ CRing) |
84 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐴 ∈ Ring) |
85 | | simprll 775 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑏 ∈ 𝐵) |
86 | | simpl3 1191 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐺 ∈ 𝐵) |
87 | 84, 85, 86, 37 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑏 ∙ 𝐺) ∈ 𝐵) |
88 | 87 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ∙ 𝐺) ∈ 𝐵) |
89 | | simprlr 776 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑐 ∈ 𝐵) |
90 | 2, 22 | ringcl 19715 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Ring ∧ 𝑐 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑐 ∙ 𝐺) ∈ 𝐵) |
91 | 84, 89, 86, 90 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑐 ∙ 𝐺) ∈ 𝐵) |
92 | 91 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑐 ∙ 𝐺) ∈ 𝐵) |
93 | | simprrl 777 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑑 ∈ 𝐵) |
94 | 2, 22 | ringcl 19715 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Ring ∧ 𝑑 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑑 ∙ 𝐺) ∈ 𝐵) |
95 | 84, 93, 86, 94 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑑 ∙ 𝐺) ∈ 𝐵) |
96 | 95 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑑 ∙ 𝐺) ∈ 𝐵) |
97 | | simp2rr 1241 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑒 ∈ 𝑁) |
98 | | simp31 1207 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁)))) |
99 | 98 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) = (((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁)))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
100 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑅 ∈ Ring) |
101 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉) = (𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉) |
102 | | snfi 8788 |
. . . . . . . . . . . . . 14
⊢ {𝑒} ∈ Fin |
103 | 102 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → {𝑒} ∈ Fin) |
104 | 10 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑁 ∈ Fin) |
105 | 1, 3, 2 | matbas2i 21479 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝐵 → 𝑐 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
106 | 89, 105 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑐 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
107 | | simprrr 778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑒 ∈ 𝑁) |
108 | 107 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → {𝑒} ⊆ 𝑁) |
109 | | xpss1 5599 |
. . . . . . . . . . . . . . 15
⊢ ({𝑒} ⊆ 𝑁 → ({𝑒} × 𝑁) ⊆ (𝑁 × 𝑁)) |
110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ({𝑒} × 𝑁) ⊆ (𝑁 × 𝑁)) |
111 | | elmapssres 8613 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ ({𝑒} × 𝑁) ⊆ (𝑁 × 𝑁)) → (𝑐 ↾ ({𝑒} × 𝑁)) ∈ ((Base‘𝑅) ↑m ({𝑒} × 𝑁))) |
112 | 106, 110,
111 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑐 ↾ ({𝑒} × 𝑁)) ∈ ((Base‘𝑅) ↑m ({𝑒} × 𝑁))) |
113 | 1, 3, 2 | matbas2i 21479 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ 𝐵 → 𝑑 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
114 | 93, 113 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑑 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
115 | | elmapssres 8613 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ ({𝑒} × 𝑁) ⊆ (𝑁 × 𝑁)) → (𝑑 ↾ ({𝑒} × 𝑁)) ∈ ((Base‘𝑅) ↑m ({𝑒} × 𝑁))) |
116 | 114, 110,
115 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑑 ↾ ({𝑒} × 𝑁)) ∈ ((Base‘𝑅) ↑m ({𝑒} × 𝑁))) |
117 | 65 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐺 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
118 | 3, 100, 101, 103, 104, 104, 6, 112, 116, 117 | mamudi 21460 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁)))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) = (((𝑐 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) ∘f
(+g‘𝑅)((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺))) |
119 | 118 | 3adant3 1130 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁)))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) = (((𝑐 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) ∘f
(+g‘𝑅)((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺))) |
120 | 99, 119 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) = (((𝑐 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) ∘f
(+g‘𝑅)((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺))) |
121 | 55 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = ∙ ) |
122 | 121 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) = (𝑏 ∙ 𝐺)) |
123 | 122 | reseq1d 5879 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑏 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) |
124 | | simpl1 1189 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑅 ∈ CRing) |
125 | 85, 62 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑏 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
126 | 52, 101, 3, 124, 104, 104, 104, 108, 125, 117 | mamures 21449 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
127 | 123, 126 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
128 | 127 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
129 | 121 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑐(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) = (𝑐 ∙ 𝐺)) |
130 | 129 | reseq1d 5879 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑐(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑐 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) |
131 | 52, 101, 3, 124, 104, 104, 104, 108, 106, 117 | mamures 21449 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑐(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
132 | 130, 131 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑐 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
133 | 121 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) = (𝑑 ∙ 𝐺)) |
134 | 133 | reseq1d 5879 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) |
135 | 52, 101, 3, 124, 104, 104, 104, 108, 114, 117 | mamures 21449 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
136 | 134, 135 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
137 | 132, 136 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑐 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) = (((𝑐 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) ∘f
(+g‘𝑅)((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺))) |
138 | 137 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (((𝑐 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) = (((𝑐 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) ∘f
(+g‘𝑅)((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺))) |
139 | 120, 128,
138 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = (((𝑐 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁)))) |
140 | | simp32 1208 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
141 | 140 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺) = ((𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
142 | 122 | reseq1d 5879 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
143 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉) = (𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉) |
144 | | difssd 4063 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑁 ∖ {𝑒}) ⊆ 𝑁) |
145 | 52, 143, 3, 124, 104, 104, 104, 144, 125, 117 | mamures 21449 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
146 | 142, 145 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
147 | 146 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
148 | 129 | reseq1d 5879 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑐(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑐 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
149 | 52, 143, 3, 124, 104, 104, 104, 144, 106, 117 | mamures 21449 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑐(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
150 | 148, 149 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑐 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
151 | 150 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑐 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
152 | 141, 147,
151 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑐 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
153 | | simp33 1209 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
154 | 153 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺) = ((𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
155 | 133 | reseq1d 5879 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
156 | 52, 143, 3, 124, 104, 104, 104, 144, 114, 117 | mamures 21449 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
157 | 155, 156 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
158 | 157 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑑 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
159 | 154, 147,
158 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
160 | 13, 1, 2, 6, 83, 88, 92, 96, 97, 139, 152, 159 | mdetrlin 21659 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷‘(𝑏 ∙ 𝐺)) = ((𝐷‘(𝑐 ∙ 𝐺))(+g‘𝑅)(𝐷‘(𝑑 ∙ 𝐺)))) |
161 | 85, 31 | syl 17 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝐷‘(𝑏 ∙ 𝐺))) |
162 | 161 | 3adant3 1130 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝐷‘(𝑏 ∙ 𝐺))) |
163 | | fvoveq1 7278 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → (𝐷‘(𝑎 ∙ 𝐺)) = (𝐷‘(𝑐 ∙ 𝐺))) |
164 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝐷‘(𝑐 ∙ 𝐺)) ∈ V |
165 | 163, 29, 164 | fvmpt 6857 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝐵 → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐) = (𝐷‘(𝑐 ∙ 𝐺))) |
166 | 89, 165 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐) = (𝐷‘(𝑐 ∙ 𝐺))) |
167 | | fvoveq1 7278 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑑 → (𝐷‘(𝑎 ∙ 𝐺)) = (𝐷‘(𝑑 ∙ 𝐺))) |
168 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝐷‘(𝑑 ∙ 𝐺)) ∈ V |
169 | 167, 29, 168 | fvmpt 6857 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ 𝐵 → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑) = (𝐷‘(𝑑 ∙ 𝐺))) |
170 | 93, 169 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑) = (𝐷‘(𝑑 ∙ 𝐺))) |
171 | 166, 170 | oveq12d 7273 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐)(+g‘𝑅)((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)) = ((𝐷‘(𝑐 ∙ 𝐺))(+g‘𝑅)(𝐷‘(𝑑 ∙ 𝐺)))) |
172 | 171 | 3adant3 1130 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐)(+g‘𝑅)((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)) = ((𝐷‘(𝑐 ∙ 𝐺))(+g‘𝑅)(𝐷‘(𝑑 ∙ 𝐺)))) |
173 | 160, 162,
172 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐)(+g‘𝑅)((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑))) |
174 | 173 | 3expia 1119 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐)(+g‘𝑅)((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)))) |
175 | 174 | anassrs 467 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐)(+g‘𝑅)((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)))) |
176 | 175 | ralrimivva 3114 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ∀𝑑 ∈ 𝐵 ∀𝑒 ∈ 𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐)(+g‘𝑅)((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)))) |
177 | 176 | ralrimivva 3114 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑑 ∈ 𝐵 ∀𝑒 ∈ 𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f
(+g‘𝑅)(𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑐)(+g‘𝑅)((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)))) |
178 | | simp11 1201 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑅 ∈ CRing) |
179 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐴 ∈ Ring) |
180 | | simprll 775 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑏 ∈ 𝐵) |
181 | | simpl3 1191 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐺 ∈ 𝐵) |
182 | 179, 180,
181, 37 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑏 ∙ 𝐺) ∈ 𝐵) |
183 | 182 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ∙ 𝐺) ∈ 𝐵) |
184 | | simp2lr 1239 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑐 ∈ (Base‘𝑅)) |
185 | | simprrl 777 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑑 ∈ 𝐵) |
186 | 179, 185,
181, 94 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑑 ∙ 𝐺) ∈ 𝐵) |
187 | 186 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑑 ∙ 𝐺) ∈ 𝐵) |
188 | | simp2rr 1241 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑒 ∈ 𝑁) |
189 | | simp3l 1199 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁)))) |
190 | 189 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) = (((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁)))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
191 | 55 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = ∙ ) |
192 | 191 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) = (𝑏 ∙ 𝐺)) |
193 | 192 | reseq1d 5879 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑏 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) |
194 | | simpl1 1189 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑅 ∈ CRing) |
195 | 10 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑁 ∈ Fin) |
196 | | simprrr 778 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑒 ∈ 𝑁) |
197 | 196 | snssd 4739 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → {𝑒} ⊆ 𝑁) |
198 | 180, 62 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑏 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
199 | 65 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐺 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
200 | 52, 101, 3, 194, 195, 195, 195, 197, 198, 199 | mamures 21449 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
201 | 193, 200 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
202 | 201 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑏 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
203 | 191 | oveqd 7272 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) = (𝑑 ∙ 𝐺)) |
204 | 203 | reseq1d 5879 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) |
205 | 185, 113 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑑 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
206 | 52, 101, 3, 194, 195, 195, 195, 197, 205, 199 | mamures 21449 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
207 | 204, 206 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = ((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
208 | 207 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((({𝑒} × 𝑁) × {𝑐}) ∘f · ((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · ((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺))) |
209 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑅 ∈ Ring) |
210 | 102 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → {𝑒} ∈ Fin) |
211 | | simprlr 776 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑐 ∈ (Base‘𝑅)) |
212 | 197, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ({𝑒} × 𝑁) ⊆ (𝑁 × 𝑁)) |
213 | 205, 212,
115 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑑 ↾ ({𝑒} × 𝑁)) ∈ ((Base‘𝑅) ↑m ({𝑒} × 𝑁))) |
214 | 3, 209, 101, 210, 195, 195, 7, 211, 213, 199 | mamuvs1 21462 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁)))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · ((𝑑 ↾ ({𝑒} × 𝑁))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺))) |
215 | 208, 214 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((({𝑒} × 𝑁) × {𝑐}) ∘f · ((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) = (((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁)))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
216 | 215 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((({𝑒} × 𝑁) × {𝑐}) ∘f · ((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁))) = (((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁)))(𝑅 maMul 〈{𝑒}, 𝑁, 𝑁〉)𝐺)) |
217 | 190, 202,
216 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · ((𝑑 ∙ 𝐺) ↾ ({𝑒} × 𝑁)))) |
218 | | simp3r 1200 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
219 | 218 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺) = ((𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
220 | 192 | reseq1d 5879 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
221 | | difssd 4063 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑁 ∖ {𝑒}) ⊆ 𝑁) |
222 | 52, 143, 3, 194, 195, 195, 195, 221, 198, 199 | mamures 21449 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
223 | 220, 222 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
224 | 223 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
225 | 203 | reseq1d 5879 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
226 | 52, 143, 3, 194, 195, 195, 195, 221, 205, 199 | mamures 21449 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
227 | 225, 226 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑑 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
228 | 227 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑑 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))(𝑅 maMul 〈(𝑁 ∖ {𝑒}), 𝑁, 𝑁〉)𝐺)) |
229 | 219, 224,
228 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑏 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = ((𝑑 ∙ 𝐺) ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
230 | 13, 1, 2, 3, 7, 178, 183, 184, 187, 188, 217, 229 | mdetrsca 21660 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷‘(𝑏 ∙ 𝐺)) = (𝑐 · (𝐷‘(𝑑 ∙ 𝐺)))) |
231 | | simp2ll 1238 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑏 ∈ 𝐵) |
232 | 231, 31 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝐷‘(𝑏 ∙ 𝐺))) |
233 | | simp2rl 1240 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑑 ∈ 𝐵) |
234 | 169 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑑 ∈ 𝐵 → (𝑐 · ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)) = (𝑐 · (𝐷‘(𝑑 ∙ 𝐺)))) |
235 | 233, 234 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑐 · ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)) = (𝑐 · (𝐷‘(𝑑 ∙ 𝐺)))) |
236 | 230, 232,
235 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑))) |
237 | 236 | 3expia 1119 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)))) |
238 | 237 | anassrs 467 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅))) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)))) |
239 | 238 | ralrimivva 3114 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ (Base‘𝑅))) → ∀𝑑 ∈ 𝐵 ∀𝑒 ∈ 𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)))) |
240 | 239 | ralrimivva 3114 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ 𝐵 ∀𝑒 ∈ 𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝑑)))) |
241 | | simp2 1135 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) |
242 | 1, 2, 3, 4, 5, 6, 7, 10, 12, 26, 82, 177, 240, 13, 51, 241 | mdetuni0 21678 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝐹) = (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘(1r‘𝐴)) · (𝐷‘𝐹))) |
243 | | fvoveq1 7278 |
. . . 4
⊢ (𝑎 = 𝐹 → (𝐷‘(𝑎 ∙ 𝐺)) = (𝐷‘(𝐹 ∙ 𝐺))) |
244 | | fvex 6769 |
. . . 4
⊢ (𝐷‘(𝐹 ∙ 𝐺)) ∈ V |
245 | 243, 29, 244 | fvmpt 6857 |
. . 3
⊢ (𝐹 ∈ 𝐵 → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝐹) = (𝐷‘(𝐹 ∙ 𝐺))) |
246 | 245 | 3ad2ant2 1132 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘𝐹) = (𝐷‘(𝐹 ∙ 𝐺))) |
247 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝐴) = (1r‘𝐴) |
248 | 2, 247 | ringidcl 19722 |
. . . . . 6
⊢ (𝐴 ∈ Ring →
(1r‘𝐴)
∈ 𝐵) |
249 | | fvoveq1 7278 |
. . . . . . 7
⊢ (𝑎 = (1r‘𝐴) → (𝐷‘(𝑎 ∙ 𝐺)) = (𝐷‘((1r‘𝐴) ∙ 𝐺))) |
250 | | fvex 6769 |
. . . . . . 7
⊢ (𝐷‘((1r‘𝐴) ∙ 𝐺)) ∈ V |
251 | 249, 29, 250 | fvmpt 6857 |
. . . . . 6
⊢
((1r‘𝐴) ∈ 𝐵 → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘(1r‘𝐴)) = (𝐷‘((1r‘𝐴) ∙ 𝐺))) |
252 | 18, 248, 251 | 3syl 18 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘(1r‘𝐴)) = (𝐷‘((1r‘𝐴) ∙ 𝐺))) |
253 | | simp3 1136 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
254 | 2, 22, 247 | ringlidm 19725 |
. . . . . . 7
⊢ ((𝐴 ∈ Ring ∧ 𝐺 ∈ 𝐵) → ((1r‘𝐴) ∙ 𝐺) = 𝐺) |
255 | 18, 253, 254 | syl2anc 583 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((1r‘𝐴) ∙ 𝐺) = 𝐺) |
256 | 255 | fveq2d 6760 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((1r‘𝐴) ∙ 𝐺)) = (𝐷‘𝐺)) |
257 | 252, 256 | eqtrd 2778 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘(1r‘𝐴)) = (𝐷‘𝐺)) |
258 | 257 | oveq1d 7270 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘(1r‘𝐴)) · (𝐷‘𝐹)) = ((𝐷‘𝐺) · (𝐷‘𝐹))) |
259 | 15, 253 | ffvelrnd 6944 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐷‘𝐺) ∈ (Base‘𝑅)) |
260 | 15, 241 | ffvelrnd 6944 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐷‘𝐹) ∈ (Base‘𝑅)) |
261 | 3, 7 | crngcom 19716 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ (𝐷‘𝐺) ∈ (Base‘𝑅) ∧ (𝐷‘𝐹) ∈ (Base‘𝑅)) → ((𝐷‘𝐺) · (𝐷‘𝐹)) = ((𝐷‘𝐹) · (𝐷‘𝐺))) |
262 | 51, 259, 260, 261 | syl3anc 1369 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐷‘𝐺) · (𝐷‘𝐹)) = ((𝐷‘𝐹) · (𝐷‘𝐺))) |
263 | 258, 262 | eqtrd 2778 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (((𝑎 ∈ 𝐵 ↦ (𝐷‘(𝑎 ∙ 𝐺)))‘(1r‘𝐴)) · (𝐷‘𝐹)) = ((𝐷‘𝐹) · (𝐷‘𝐺))) |
264 | 242, 246,
263 | 3eqtr3d 2786 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐷‘(𝐹 ∙ 𝐺)) = ((𝐷‘𝐹) · (𝐷‘𝐺))) |