Step | Hyp | Ref
| Expression |
1 | | simprr 771 |
. . . . . 6
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))) |
2 | | xkohmeo.x |
. . . . . . . . 9
β’ (π β π½ β (TopOnβπ)) |
3 | 2 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β π½ β (TopOnβπ)) |
4 | | xkohmeo.y |
. . . . . . . . 9
β’ (π β πΎ β (TopOnβπ)) |
5 | 4 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β πΎ β (TopOnβπ)) |
6 | | txtopon 23086 |
. . . . . . . . . . . . . 14
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π½ Γt πΎ) β (TopOnβ(π Γ π))) |
7 | 2, 4, 6 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (π β (π½ Γt πΎ) β (TopOnβ(π Γ π))) |
8 | 7 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β (π½ Γt πΎ) β (TopOnβ(π Γ π))) |
9 | | xkohmeo.l |
. . . . . . . . . . . . . 14
β’ (π β πΏ β Top) |
10 | | toptopon2 22411 |
. . . . . . . . . . . . . 14
β’ (πΏ β Top β πΏ β (TopOnββͺ πΏ)) |
11 | 9, 10 | sylib 217 |
. . . . . . . . . . . . 13
β’ (π β πΏ β (TopOnββͺ πΏ)) |
12 | 11 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β πΏ β (TopOnββͺ πΏ)) |
13 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β π β ((π½ Γt πΎ) Cn πΏ)) |
14 | | cnf2 22744 |
. . . . . . . . . . . 12
β’ (((π½ Γt πΎ) β (TopOnβ(π Γ π)) β§ πΏ β (TopOnββͺ πΏ)
β§ π β ((π½ Γt πΎ) Cn πΏ)) β π:(π Γ π)βΆβͺ πΏ) |
15 | 8, 12, 13, 14 | syl3anc 1371 |
. . . . . . . . . . 11
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β π:(π Γ π)βΆβͺ πΏ) |
16 | 15 | ffnd 6715 |
. . . . . . . . . 10
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β π Fn (π Γ π)) |
17 | | fnov 7536 |
. . . . . . . . . 10
β’ (π Fn (π Γ π) β π = (π₯ β π, π¦ β π β¦ (π₯ππ¦))) |
18 | 16, 17 | sylib 217 |
. . . . . . . . 9
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β π = (π₯ β π, π¦ β π β¦ (π₯ππ¦))) |
19 | 18, 13 | eqeltrrd 2834 |
. . . . . . . 8
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β (π₯ β π, π¦ β π β¦ (π₯ππ¦)) β ((π½ Γt πΎ) Cn πΏ)) |
20 | 3, 5, 19 | cnmpt2k 23183 |
. . . . . . 7
β’ ((π β§ π β ((π½ Γt πΎ) Cn πΏ)) β (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) β (π½ Cn (πΏ βko πΎ))) |
21 | 20 | adantrr 715 |
. . . . . 6
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) β (π½ Cn (πΏ βko πΎ))) |
22 | 1, 21 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β π β (π½ Cn (πΏ βko πΎ))) |
23 | 18 | adantrr 715 |
. . . . . 6
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β π = (π₯ β π, π¦ β π β¦ (π₯ππ¦))) |
24 | | eqid 2732 |
. . . . . . 7
β’ π = π |
25 | | nfv 1917 |
. . . . . . . . 9
β’
β²π₯π |
26 | | nfv 1917 |
. . . . . . . . . 10
β’
β²π₯ π β ((π½ Γt πΎ) Cn πΏ) |
27 | | nfmpt1 5255 |
. . . . . . . . . . 11
β’
β²π₯(π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) |
28 | 27 | nfeq2 2920 |
. . . . . . . . . 10
β’
β²π₯ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) |
29 | 26, 28 | nfan 1902 |
. . . . . . . . 9
β’
β²π₯(π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))) |
30 | 25, 29 | nfan 1902 |
. . . . . . . 8
β’
β²π₯(π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) |
31 | | nfv 1917 |
. . . . . . . . . . . . 13
β’
β²π¦π |
32 | | nfv 1917 |
. . . . . . . . . . . . . 14
β’
β²π¦ π β ((π½ Γt πΎ) Cn πΏ) |
33 | | nfcv 2903 |
. . . . . . . . . . . . . . . 16
β’
β²π¦π |
34 | | nfmpt1 5255 |
. . . . . . . . . . . . . . . 16
β’
β²π¦(π¦ β π β¦ (π₯ππ¦)) |
35 | 33, 34 | nfmpt 5254 |
. . . . . . . . . . . . . . 15
β’
β²π¦(π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) |
36 | 35 | nfeq2 2920 |
. . . . . . . . . . . . . 14
β’
β²π¦ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) |
37 | 32, 36 | nfan 1902 |
. . . . . . . . . . . . 13
β’
β²π¦(π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))) |
38 | 31, 37 | nfan 1902 |
. . . . . . . . . . . 12
β’
β²π¦(π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) |
39 | | nfv 1917 |
. . . . . . . . . . . 12
β’
β²π¦ π₯ β π |
40 | 38, 39 | nfan 1902 |
. . . . . . . . . . 11
β’
β²π¦((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ π₯ β π) |
41 | | simplrr 776 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))) |
42 | 41 | fveq1d 6890 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β (πβπ₯) = ((π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))βπ₯)) |
43 | | simprl 769 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β π₯ β π) |
44 | | toponmax 22419 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΎ β (TopOnβπ) β π β πΎ) |
45 | 4, 44 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π β πΎ) |
46 | 45 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β π β πΎ) |
47 | 46 | mptexd 7222 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β (π¦ β π β¦ (π₯ππ¦)) β V) |
48 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) |
49 | 48 | fvmpt2 7006 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β π β§ (π¦ β π β¦ (π₯ππ¦)) β V) β ((π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))βπ₯) = (π¦ β π β¦ (π₯ππ¦))) |
50 | 43, 47, 49 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β ((π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))βπ₯) = (π¦ β π β¦ (π₯ππ¦))) |
51 | 42, 50 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β (πβπ₯) = (π¦ β π β¦ (π₯ππ¦))) |
52 | 51 | fveq1d 6890 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β ((πβπ₯)βπ¦) = ((π¦ β π β¦ (π₯ππ¦))βπ¦)) |
53 | | simprr 771 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β π¦ β π) |
54 | | ovex 7438 |
. . . . . . . . . . . . . 14
β’ (π₯ππ¦) β V |
55 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’ (π¦ β π β¦ (π₯ππ¦)) = (π¦ β π β¦ (π₯ππ¦)) |
56 | 55 | fvmpt2 7006 |
. . . . . . . . . . . . . 14
β’ ((π¦ β π β§ (π₯ππ¦) β V) β ((π¦ β π β¦ (π₯ππ¦))βπ¦) = (π₯ππ¦)) |
57 | 53, 54, 56 | sylancl 586 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β ((π¦ β π β¦ (π₯ππ¦))βπ¦) = (π₯ππ¦)) |
58 | 52, 57 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ (π₯ β π β§ π¦ β π)) β ((πβπ₯)βπ¦) = (π₯ππ¦)) |
59 | 58 | expr 457 |
. . . . . . . . . . 11
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ π₯ β π) β (π¦ β π β ((πβπ₯)βπ¦) = (π₯ππ¦))) |
60 | 40, 59 | ralrimi 3254 |
. . . . . . . . . 10
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ π₯ β π) β βπ¦ β π ((πβπ₯)βπ¦) = (π₯ππ¦)) |
61 | | eqid 2732 |
. . . . . . . . . 10
β’ π = π |
62 | 60, 61 | jctil 520 |
. . . . . . . . 9
β’ (((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β§ π₯ β π) β (π = π β§ βπ¦ β π ((πβπ₯)βπ¦) = (π₯ππ¦))) |
63 | 62 | ex 413 |
. . . . . . . 8
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β (π₯ β π β (π = π β§ βπ¦ β π ((πβπ₯)βπ¦) = (π₯ππ¦)))) |
64 | 30, 63 | ralrimi 3254 |
. . . . . . 7
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β βπ₯ β π (π = π β§ βπ¦ β π ((πβπ₯)βπ¦) = (π₯ππ¦))) |
65 | | mpoeq123 7477 |
. . . . . . 7
β’ ((π = π β§ βπ₯ β π (π = π β§ βπ¦ β π ((πβπ₯)βπ¦) = (π₯ππ¦))) β (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) = (π₯ β π, π¦ β π β¦ (π₯ππ¦))) |
66 | 24, 64, 65 | sylancr 587 |
. . . . . 6
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) = (π₯ β π, π¦ β π β¦ (π₯ππ¦))) |
67 | 23, 66 | eqtr4d 2775 |
. . . . 5
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))) |
68 | 22, 67 | jca 512 |
. . . 4
β’ ((π β§ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) β (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) |
69 | | simprr 771 |
. . . . . 6
β’ ((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))) |
70 | 2 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β π½ β (TopOnβπ)) |
71 | 4 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β πΎ β (TopOnβπ)) |
72 | 11 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β πΏ β (TopOnββͺ πΏ)) |
73 | | xkohmeo.k |
. . . . . . . . 9
β’ (π β πΎ β π-Locally
Comp) |
74 | 73 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β πΎ β π-Locally
Comp) |
75 | | nllytop 22968 |
. . . . . . . . . . . . . 14
β’ (πΎ β π-Locally Comp
β πΎ β
Top) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β πΎ β Top) |
77 | 9 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β πΏ β Top) |
78 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’ (πΏ βko πΎ) = (πΏ βko πΎ) |
79 | 78 | xkotopon 23095 |
. . . . . . . . . . . . 13
β’ ((πΎ β Top β§ πΏ β Top) β (πΏ βko πΎ) β (TopOnβ(πΎ Cn πΏ))) |
80 | 76, 77, 79 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β (πΏ βko πΎ) β (TopOnβ(πΎ Cn πΏ))) |
81 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β π β (π½ Cn (πΏ βko πΎ))) |
82 | | cnf2 22744 |
. . . . . . . . . . . 12
β’ ((π½ β (TopOnβπ) β§ (πΏ βko πΎ) β (TopOnβ(πΎ Cn πΏ)) β§ π β (π½ Cn (πΏ βko πΎ))) β π:πβΆ(πΎ Cn πΏ)) |
83 | 70, 80, 81, 82 | syl3anc 1371 |
. . . . . . . . . . 11
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β π:πβΆ(πΎ Cn πΏ)) |
84 | 83 | feqmptd 6957 |
. . . . . . . . . 10
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β π = (π₯ β π β¦ (πβπ₯))) |
85 | 4 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π½ Cn (πΏ βko πΎ))) β§ π₯ β π) β πΎ β (TopOnβπ)) |
86 | 11 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π½ Cn (πΏ βko πΎ))) β§ π₯ β π) β πΏ β (TopOnββͺ πΏ)) |
87 | 83 | ffvelcdmda 7083 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π½ Cn (πΏ βko πΎ))) β§ π₯ β π) β (πβπ₯) β (πΎ Cn πΏ)) |
88 | | cnf2 22744 |
. . . . . . . . . . . . 13
β’ ((πΎ β (TopOnβπ) β§ πΏ β (TopOnββͺ πΏ)
β§ (πβπ₯) β (πΎ Cn πΏ)) β (πβπ₯):πβΆβͺ πΏ) |
89 | 85, 86, 87, 88 | syl3anc 1371 |
. . . . . . . . . . . 12
β’ (((π β§ π β (π½ Cn (πΏ βko πΎ))) β§ π₯ β π) β (πβπ₯):πβΆβͺ πΏ) |
90 | 89 | feqmptd 6957 |
. . . . . . . . . . 11
β’ (((π β§ π β (π½ Cn (πΏ βko πΎ))) β§ π₯ β π) β (πβπ₯) = (π¦ β π β¦ ((πβπ₯)βπ¦))) |
91 | 90 | mpteq2dva 5247 |
. . . . . . . . . 10
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β (π₯ β π β¦ (πβπ₯)) = (π₯ β π β¦ (π¦ β π β¦ ((πβπ₯)βπ¦)))) |
92 | 84, 91 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β π = (π₯ β π β¦ (π¦ β π β¦ ((πβπ₯)βπ¦)))) |
93 | 92, 81 | eqeltrrd 2834 |
. . . . . . . 8
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β (π₯ β π β¦ (π¦ β π β¦ ((πβπ₯)βπ¦))) β (π½ Cn (πΏ βko πΎ))) |
94 | 70, 71, 72, 74, 93 | cnmptk2 23181 |
. . . . . . 7
β’ ((π β§ π β (π½ Cn (πΏ βko πΎ))) β (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) β ((π½ Γt πΎ) Cn πΏ)) |
95 | 94 | adantrr 715 |
. . . . . 6
β’ ((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) β ((π½ Γt πΎ) Cn πΏ)) |
96 | 69, 95 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β π β ((π½ Γt πΎ) Cn πΏ)) |
97 | 92 | adantrr 715 |
. . . . . 6
β’ ((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β π = (π₯ β π β¦ (π¦ β π β¦ ((πβπ₯)βπ¦)))) |
98 | | nfv 1917 |
. . . . . . . . 9
β’
β²π₯ π β (π½ Cn (πΏ βko πΎ)) |
99 | | nfmpo1 7485 |
. . . . . . . . . 10
β’
β²π₯(π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) |
100 | 99 | nfeq2 2920 |
. . . . . . . . 9
β’
β²π₯ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) |
101 | 98, 100 | nfan 1902 |
. . . . . . . 8
β’
β²π₯(π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))) |
102 | 25, 101 | nfan 1902 |
. . . . . . 7
β’
β²π₯(π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) |
103 | | nfv 1917 |
. . . . . . . . . . . 12
β’
β²π¦ π β (π½ Cn (πΏ βko πΎ)) |
104 | | nfmpo2 7486 |
. . . . . . . . . . . . 13
β’
β²π¦(π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) |
105 | 104 | nfeq2 2920 |
. . . . . . . . . . . 12
β’
β²π¦ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) |
106 | 103, 105 | nfan 1902 |
. . . . . . . . . . 11
β’
β²π¦(π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))) |
107 | 31, 106 | nfan 1902 |
. . . . . . . . . 10
β’
β²π¦(π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) |
108 | 107, 39 | nfan 1902 |
. . . . . . . . 9
β’
β²π¦((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β§ π₯ β π) |
109 | 69 | oveqd 7422 |
. . . . . . . . . . 11
β’ ((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β (π₯ππ¦) = (π₯(π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))π¦)) |
110 | | fvex 6901 |
. . . . . . . . . . . 12
β’ ((πβπ₯)βπ¦) β V |
111 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)) |
112 | 111 | ovmpt4g 7551 |
. . . . . . . . . . . 12
β’ ((π₯ β π β§ π¦ β π β§ ((πβπ₯)βπ¦) β V) β (π₯(π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))π¦) = ((πβπ₯)βπ¦)) |
113 | 110, 112 | mp3an3 1450 |
. . . . . . . . . . 11
β’ ((π₯ β π β§ π¦ β π) β (π₯(π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))π¦) = ((πβπ₯)βπ¦)) |
114 | 109, 113 | sylan9eq 2792 |
. . . . . . . . . 10
β’ (((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β§ (π₯ β π β§ π¦ β π)) β (π₯ππ¦) = ((πβπ₯)βπ¦)) |
115 | 114 | expr 457 |
. . . . . . . . 9
β’ (((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β§ π₯ β π) β (π¦ β π β (π₯ππ¦) = ((πβπ₯)βπ¦))) |
116 | 108, 115 | ralrimi 3254 |
. . . . . . . 8
β’ (((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β§ π₯ β π) β βπ¦ β π (π₯ππ¦) = ((πβπ₯)βπ¦)) |
117 | | mpteq12 5239 |
. . . . . . . 8
β’ ((π = π β§ βπ¦ β π (π₯ππ¦) = ((πβπ₯)βπ¦)) β (π¦ β π β¦ (π₯ππ¦)) = (π¦ β π β¦ ((πβπ₯)βπ¦))) |
118 | 61, 116, 117 | sylancr 587 |
. . . . . . 7
β’ (((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β§ π₯ β π) β (π¦ β π β¦ (π₯ππ¦)) = (π¦ β π β¦ ((πβπ₯)βπ¦))) |
119 | 102, 118 | mpteq2da 5245 |
. . . . . 6
β’ ((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))) = (π₯ β π β¦ (π¦ β π β¦ ((πβπ₯)βπ¦)))) |
120 | 97, 119 | eqtr4d 2775 |
. . . . 5
β’ ((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))) |
121 | 96, 120 | jca 512 |
. . . 4
β’ ((π β§ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) β (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))) |
122 | 68, 121 | impbida 799 |
. . 3
β’ (π β ((π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))) β (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))))) |
123 | 122 | opabbidv 5213 |
. 2
β’ (π β {β¨π, πβ© β£ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))} = {β¨π, πβ© β£ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))}) |
124 | | xkohmeo.f |
. . . . 5
β’ πΉ = (π β ((π½ Γt πΎ) Cn πΏ) β¦ (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))) |
125 | | df-mpt 5231 |
. . . . 5
β’ (π β ((π½ Γt πΎ) Cn πΏ) β¦ (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦)))) = {β¨π, πβ© β£ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))} |
126 | 124, 125 | eqtri 2760 |
. . . 4
β’ πΉ = {β¨π, πβ© β£ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))} |
127 | 126 | cnveqi 5872 |
. . 3
β’ β‘πΉ = β‘{β¨π, πβ© β£ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))} |
128 | | cnvopab 6135 |
. . 3
β’ β‘{β¨π, πβ© β£ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))} = {β¨π, πβ© β£ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))} |
129 | 127, 128 | eqtri 2760 |
. 2
β’ β‘πΉ = {β¨π, πβ© β£ (π β ((π½ Γt πΎ) Cn πΏ) β§ π = (π₯ β π β¦ (π¦ β π β¦ (π₯ππ¦))))} |
130 | | df-mpt 5231 |
. 2
β’ (π β (π½ Cn (πΏ βko πΎ)) β¦ (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦))) = {β¨π, πβ© β£ (π β (π½ Cn (πΏ βko πΎ)) β§ π = (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))} |
131 | 123, 129,
130 | 3eqtr4g 2797 |
1
β’ (π β β‘πΉ = (π β (π½ Cn (πΏ βko πΎ)) β¦ (π₯ β π, π¦ β π β¦ ((πβπ₯)βπ¦)))) |