Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptima2 Structured version   Visualization version   GIF version

Theorem mptima2 40370
Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
mptima2.1 (𝜑𝐶𝐴)
Assertion
Ref Expression
mptima2 (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem mptima2
StepHypRef Expression
1 mptima 40354 . . 3 ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵))
3 mptima2.1 . . . . 5 (𝜑𝐶𝐴)
4 sseqin2 4040 . . . . . 6 (𝐶𝐴 ↔ (𝐴𝐶) = 𝐶)
54biimpi 208 . . . . 5 (𝐶𝐴 → (𝐴𝐶) = 𝐶)
63, 5syl 17 . . . 4 (𝜑 → (𝐴𝐶) = 𝐶)
76mpteq1d 4973 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = (𝑥𝐶𝐵))
87rneqd 5598 . 2 (𝜑 → ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = ran (𝑥𝐶𝐵))
92, 8eqtrd 2814 1 (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  cin 3791  wss 3792  cmpt 4965  ran crn 5356  cima 5358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4887  df-opab 4949  df-mpt 4966  df-xp 5361  df-rel 5362  df-cnv 5363  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368
This theorem is referenced by:  limsupresico  40840  limsupvaluz  40848  liminfresico  40911
  Copyright terms: Public domain W3C validator