Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptima2 | Structured version Visualization version GIF version |
Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
mptima2.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
mptima2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima 5970 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
2 | mptima2.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | sseqin2 4146 | . . . . 5 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = 𝐶) |
5 | 4 | mpteq1d 5165 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
6 | 5 | rneqd 5836 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
7 | 1, 6 | syl5eq 2791 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 ↦ cmpt 5153 ran crn 5581 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: limsupresico 43131 limsupvaluz 43139 liminfresico 43202 |
Copyright terms: Public domain | W3C validator |