Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimaeq | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funimaeq.x | ⊢ Ⅎ𝑥𝜑 |
funimaeq.f | ⊢ (𝜑 → Fun 𝐹) |
funimaeq.g | ⊢ (𝜑 → Fun 𝐺) |
funimaeq.a | ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
funimaeq.d | ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) |
funimaeq.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
funimaeq | ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimaeq.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | funimaeq.f | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
3 | funimaeq.e | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
4 | funimaeq.g | . . . . . . 7 ⊢ (𝜑 → Fun 𝐺) | |
5 | 4 | funfnd 6494 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
6 | 5 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺 Fn dom 𝐺) |
7 | funimaeq.d | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) | |
8 | 7 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐺) |
9 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
10 | fnfvima 7141 | . . . . 5 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) | |
11 | 6, 8, 9, 10 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
12 | 3, 11 | eqeltrd 2837 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐺 “ 𝐴)) |
13 | 1, 2, 12 | funimassd 42991 | . 2 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ (𝐺 “ 𝐴)) |
14 | 2 | funfnd 6494 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
15 | 14 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
16 | funimaeq.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) | |
17 | 16 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐹) |
18 | fnfvima 7141 | . . . . 5 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) | |
19 | 15, 17, 9, 18 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) |
20 | 3, 19 | eqeltrrd 2838 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐹 “ 𝐴)) |
21 | 1, 4, 20 | funimassd 42991 | . 2 ⊢ (𝜑 → (𝐺 “ 𝐴) ⊆ (𝐹 “ 𝐴)) |
22 | 13, 21 | eqssd 3943 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ⊆ wss 3892 dom cdm 5600 “ cima 5603 Fun wfun 6452 Fn wfn 6453 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-fv 6466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |