| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funimaeq | Structured version Visualization version GIF version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funimaeq.x | ⊢ Ⅎ𝑥𝜑 |
| funimaeq.f | ⊢ (𝜑 → Fun 𝐹) |
| funimaeq.g | ⊢ (𝜑 → Fun 𝐺) |
| funimaeq.a | ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| funimaeq.d | ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) |
| funimaeq.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| funimaeq | ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimaeq.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | funimaeq.f | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 3 | funimaeq.e | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 4 | funimaeq.g | . . . . . . 7 ⊢ (𝜑 → Fun 𝐺) | |
| 5 | 4 | funfnd 6549 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺 Fn dom 𝐺) |
| 7 | funimaeq.d | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐺) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 10 | fnfvima 7209 | . . . . 5 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) | |
| 11 | 6, 8, 9, 10 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
| 12 | 3, 11 | eqeltrd 2829 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐺 “ 𝐴)) |
| 13 | 1, 2, 12 | funimassd 6929 | . 2 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ (𝐺 “ 𝐴)) |
| 14 | 2 | funfnd 6549 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
| 16 | funimaeq.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) | |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐹) |
| 18 | fnfvima 7209 | . . . . 5 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) | |
| 19 | 15, 17, 9, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) |
| 20 | 3, 19 | eqeltrrd 2830 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐹 “ 𝐴)) |
| 21 | 1, 4, 20 | funimassd 6929 | . 2 ⊢ (𝜑 → (𝐺 “ 𝐴) ⊆ (𝐹 “ 𝐴)) |
| 22 | 13, 21 | eqssd 3966 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ⊆ wss 3916 dom cdm 5640 “ cima 5643 Fun wfun 6507 Fn wfn 6508 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-fv 6521 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |