![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimaeq | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funimaeq.x | ⊢ Ⅎ𝑥𝜑 |
funimaeq.f | ⊢ (𝜑 → Fun 𝐹) |
funimaeq.g | ⊢ (𝜑 → Fun 𝐺) |
funimaeq.a | ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
funimaeq.d | ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) |
funimaeq.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
funimaeq | ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimaeq.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | funimaeq.f | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
3 | funimaeq.e | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
4 | funimaeq.g | . . . . . . 7 ⊢ (𝜑 → Fun 𝐺) | |
5 | 4 | funfnd 6611 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺 Fn dom 𝐺) |
7 | funimaeq.d | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐺) |
9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
10 | fnfvima 7272 | . . . . 5 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) | |
11 | 6, 8, 9, 10 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
12 | 3, 11 | eqeltrd 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐺 “ 𝐴)) |
13 | 1, 2, 12 | funimassd 6990 | . 2 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ (𝐺 “ 𝐴)) |
14 | 2 | funfnd 6611 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
16 | funimaeq.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) | |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐹) |
18 | fnfvima 7272 | . . . . 5 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) | |
19 | 15, 17, 9, 18 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) |
20 | 3, 19 | eqeltrrd 2845 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐹 “ 𝐴)) |
21 | 1, 4, 20 | funimassd 6990 | . 2 ⊢ (𝜑 → (𝐺 “ 𝐴) ⊆ (𝐹 “ 𝐴)) |
22 | 13, 21 | eqssd 4026 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ⊆ wss 3976 dom cdm 5700 “ cima 5703 Fun wfun 6569 Fn wfn 6570 ‘cfv 6575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-fv 6583 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |