Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimaeq Structured version   Visualization version   GIF version

Theorem funimaeq 45240
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
funimaeq.x 𝑥𝜑
funimaeq.f (𝜑 → Fun 𝐹)
funimaeq.g (𝜑 → Fun 𝐺)
funimaeq.a (𝜑𝐴 ⊆ dom 𝐹)
funimaeq.d (𝜑𝐴 ⊆ dom 𝐺)
funimaeq.e ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
funimaeq (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem funimaeq
StepHypRef Expression
1 funimaeq.x . . 3 𝑥𝜑
2 funimaeq.f . . 3 (𝜑 → Fun 𝐹)
3 funimaeq.e . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
4 funimaeq.g . . . . . . 7 (𝜑 → Fun 𝐺)
54funfnd 6547 . . . . . 6 (𝜑𝐺 Fn dom 𝐺)
65adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐺 Fn dom 𝐺)
7 funimaeq.d . . . . . 6 (𝜑𝐴 ⊆ dom 𝐺)
87adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐴 ⊆ dom 𝐺)
9 simpr 484 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐴)
10 fnfvima 7207 . . . . 5 ((𝐺 Fn dom 𝐺𝐴 ⊆ dom 𝐺𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
116, 8, 9, 10syl3anc 1373 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ (𝐺𝐴))
123, 11eqeltrd 2828 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (𝐺𝐴))
131, 2, 12funimassd 6927 . 2 (𝜑 → (𝐹𝐴) ⊆ (𝐺𝐴))
142funfnd 6547 . . . . . 6 (𝜑𝐹 Fn dom 𝐹)
1514adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐹 Fn dom 𝐹)
16 funimaeq.a . . . . . 6 (𝜑𝐴 ⊆ dom 𝐹)
1716adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐴 ⊆ dom 𝐹)
18 fnfvima 7207 . . . . 5 ((𝐹 Fn dom 𝐹𝐴 ⊆ dom 𝐹𝑥𝐴) → (𝐹𝑥) ∈ (𝐹𝐴))
1915, 17, 9, 18syl3anc 1373 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (𝐹𝐴))
203, 19eqeltrrd 2829 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ (𝐹𝐴))
211, 4, 20funimassd 6927 . 2 (𝜑 → (𝐺𝐴) ⊆ (𝐹𝐴))
2213, 21eqssd 3964 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wss 3914  dom cdm 5638  cima 5641  Fun wfun 6505   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator