| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funimaeq | Structured version Visualization version GIF version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funimaeq.x | ⊢ Ⅎ𝑥𝜑 |
| funimaeq.f | ⊢ (𝜑 → Fun 𝐹) |
| funimaeq.g | ⊢ (𝜑 → Fun 𝐺) |
| funimaeq.a | ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| funimaeq.d | ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) |
| funimaeq.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| funimaeq | ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimaeq.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | funimaeq.f | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 3 | funimaeq.e | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 4 | funimaeq.g | . . . . . . 7 ⊢ (𝜑 → Fun 𝐺) | |
| 5 | 4 | funfnd 6577 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺 Fn dom 𝐺) |
| 7 | funimaeq.d | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐺) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 10 | fnfvima 7235 | . . . . 5 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) | |
| 11 | 6, 8, 9, 10 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐴)) |
| 12 | 3, 11 | eqeltrd 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐺 “ 𝐴)) |
| 13 | 1, 2, 12 | funimassd 6955 | . 2 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ (𝐺 “ 𝐴)) |
| 14 | 2 | funfnd 6577 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
| 16 | funimaeq.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) | |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ dom 𝐹) |
| 18 | fnfvima 7235 | . . . . 5 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) | |
| 19 | 15, 17, 9, 18 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴)) |
| 20 | 3, 19 | eqeltrrd 2834 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ (𝐹 “ 𝐴)) |
| 21 | 1, 4, 20 | funimassd 6955 | . 2 ⊢ (𝜑 → (𝐺 “ 𝐴) ⊆ (𝐹 “ 𝐴)) |
| 22 | 13, 21 | eqssd 3981 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ⊆ wss 3931 dom cdm 5665 “ cima 5668 Fun wfun 6535 Fn wfn 6536 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-fv 6549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |