| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbdd | Structured version Visualization version GIF version | ||
| Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| rnmptbdd.x | ⊢ Ⅎ𝑥𝜑 |
| rnmptbdd.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| Ref | Expression |
|---|---|
| rnmptbdd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptbdd.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rnmptbdd.b | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
| 3 | breq2 5093 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑣)) | |
| 4 | 3 | ralbidv 3155 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣)) |
| 5 | 4 | cbvrexvw 3211 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) |
| 6 | 2, 5 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) |
| 7 | 1, 6 | rnmptbddlem 45351 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣) |
| 8 | breq2 5093 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑤 ≤ 𝑣 ↔ 𝑤 ≤ 𝑦)) | |
| 9 | 8 | ralbidv 3155 | . . . 4 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦)) |
| 10 | breq1 5092 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦)) | |
| 11 | 10 | cbvralvw 3210 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 12 | 9, 11 | bitrdi 287 | . . 3 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 13 | 12 | cbvrexvw 3211 | . 2 ⊢ (∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 14 | 7, 13 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 ℝcr 11005 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: suprclrnmpt 45358 suprubrnmpt2 45359 suprubrnmpt 45360 rnmptbdlem 45362 supxrrernmpt 45529 suprleubrnmpt 45530 supminfrnmpt 45553 |
| Copyright terms: Public domain | W3C validator |