|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbdd | Structured version Visualization version GIF version | ||
| Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| rnmptbdd.x | ⊢ Ⅎ𝑥𝜑 | 
| rnmptbdd.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | 
| Ref | Expression | 
|---|---|
| rnmptbdd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rnmptbdd.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rnmptbdd.b | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
| 3 | breq2 5147 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑣)) | |
| 4 | 3 | ralbidv 3178 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣)) | 
| 5 | 4 | cbvrexvw 3238 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) | 
| 6 | 2, 5 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) | 
| 7 | 1, 6 | rnmptbddlem 45251 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣) | 
| 8 | breq2 5147 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑤 ≤ 𝑣 ↔ 𝑤 ≤ 𝑦)) | |
| 9 | 8 | ralbidv 3178 | . . . 4 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦)) | 
| 10 | breq1 5146 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦)) | |
| 11 | 10 | cbvralvw 3237 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) | 
| 12 | 9, 11 | bitrdi 287 | . . 3 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) | 
| 13 | 12 | cbvrexvw 3238 | . 2 ⊢ (∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) | 
| 14 | 7, 13 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 Ⅎwnf 1783 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 ↦ cmpt 5225 ran crn 5686 ℝcr 11154 ≤ cle 11296 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-mpt 5226 df-cnv 5693 df-dm 5695 df-rn 5696 | 
| This theorem is referenced by: suprclrnmpt 45258 suprubrnmpt2 45259 suprubrnmpt 45260 rnmptbdlem 45262 supxrrernmpt 45432 suprleubrnmpt 45433 supminfrnmpt 45456 | 
| Copyright terms: Public domain | W3C validator |