Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbdd | Structured version Visualization version GIF version |
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbdd.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbdd.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
Ref | Expression |
---|---|
rnmptbdd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptbdd.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptbdd.b | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
3 | breq2 5082 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑣)) | |
4 | 3 | ralbidv 3122 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣)) |
5 | 4 | cbvrexvw 3381 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) |
6 | 2, 5 | sylib 217 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) |
7 | 1, 6 | rnmptbddlem 42742 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣) |
8 | breq2 5082 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑤 ≤ 𝑣 ↔ 𝑤 ≤ 𝑦)) | |
9 | 8 | ralbidv 3122 | . . . 4 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦)) |
10 | breq1 5081 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦)) | |
11 | 10 | cbvralvw 3380 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
12 | 9, 11 | bitrdi 286 | . . 3 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
13 | 12 | cbvrexvw 3381 | . 2 ⊢ (∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
14 | 7, 13 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1789 ∀wral 3065 ∃wrex 3066 class class class wbr 5078 ↦ cmpt 5161 ran crn 5589 ℝcr 10854 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: suprclrnmpt 42750 suprubrnmpt2 42751 suprubrnmpt 42752 rnmptbdlem 42754 supxrrernmpt 42915 suprleubrnmpt 42916 supminfrnmpt 42939 |
Copyright terms: Public domain | W3C validator |