Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbdd Structured version   Visualization version   GIF version

Theorem rnmptbdd 45252
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbdd.x 𝑥𝜑
rnmptbdd.b (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
rnmptbdd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rnmptbdd
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnmptbdd.x . . 3 𝑥𝜑
2 rnmptbdd.b . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
3 breq2 5147 . . . . . 6 (𝑦 = 𝑣 → (𝐵𝑦𝐵𝑣))
43ralbidv 3178 . . . . 5 (𝑦 = 𝑣 → (∀𝑥𝐴 𝐵𝑦 ↔ ∀𝑥𝐴 𝐵𝑣))
54cbvrexvw 3238 . . . 4 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑣 ∈ ℝ ∀𝑥𝐴 𝐵𝑣)
62, 5sylib 218 . . 3 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑥𝐴 𝐵𝑣)
71, 6rnmptbddlem 45251 . 2 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣)
8 breq2 5147 . . . . 5 (𝑣 = 𝑦 → (𝑤𝑣𝑤𝑦))
98ralbidv 3178 . . . 4 (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦))
10 breq1 5146 . . . . 5 (𝑤 = 𝑧 → (𝑤𝑦𝑧𝑦))
1110cbvralvw 3237 . . . 4 (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
129, 11bitrdi 287 . . 3 (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
1312cbvrexvw 3238 . 2 (∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
147, 13sylib 218 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1783  wral 3061  wrex 3070   class class class wbr 5143  cmpt 5225  ran crn 5686  cr 11154  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-mpt 5226  df-cnv 5693  df-dm 5695  df-rn 5696
This theorem is referenced by:  suprclrnmpt  45258  suprubrnmpt2  45259  suprubrnmpt  45260  rnmptbdlem  45262  supxrrernmpt  45432  suprleubrnmpt  45433  supminfrnmpt  45456
  Copyright terms: Public domain W3C validator