![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbdd | Structured version Visualization version GIF version |
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbdd.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbdd.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
Ref | Expression |
---|---|
rnmptbdd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptbdd.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptbdd.b | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
3 | breq2 5156 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑣)) | |
4 | 3 | ralbidv 3175 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣)) |
5 | 4 | cbvrexvw 3233 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) |
6 | 2, 5 | sylib 217 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) |
7 | 1, 6 | rnmptbddlem 44667 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣) |
8 | breq2 5156 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑤 ≤ 𝑣 ↔ 𝑤 ≤ 𝑦)) | |
9 | 8 | ralbidv 3175 | . . . 4 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦)) |
10 | breq1 5155 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦)) | |
11 | 10 | cbvralvw 3232 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
12 | 9, 11 | bitrdi 286 | . . 3 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
13 | 12 | cbvrexvw 3233 | . 2 ⊢ (∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
14 | 7, 13 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1777 ∀wral 3058 ∃wrex 3067 class class class wbr 5152 ↦ cmpt 5235 ran crn 5683 ℝcr 11147 ≤ cle 11289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-mpt 5236 df-cnv 5690 df-dm 5692 df-rn 5693 |
This theorem is referenced by: suprclrnmpt 44674 suprubrnmpt2 44675 suprubrnmpt 44676 rnmptbdlem 44678 supxrrernmpt 44850 suprleubrnmpt 44851 supminfrnmpt 44874 |
Copyright terms: Public domain | W3C validator |