Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbdd Structured version   Visualization version   GIF version

Theorem rnmptbdd 42743
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbdd.x 𝑥𝜑
rnmptbdd.b (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
rnmptbdd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rnmptbdd
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnmptbdd.x . . 3 𝑥𝜑
2 rnmptbdd.b . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
3 breq2 5082 . . . . . 6 (𝑦 = 𝑣 → (𝐵𝑦𝐵𝑣))
43ralbidv 3122 . . . . 5 (𝑦 = 𝑣 → (∀𝑥𝐴 𝐵𝑦 ↔ ∀𝑥𝐴 𝐵𝑣))
54cbvrexvw 3381 . . . 4 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑣 ∈ ℝ ∀𝑥𝐴 𝐵𝑣)
62, 5sylib 217 . . 3 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑥𝐴 𝐵𝑣)
71, 6rnmptbddlem 42742 . 2 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣)
8 breq2 5082 . . . . 5 (𝑣 = 𝑦 → (𝑤𝑣𝑤𝑦))
98ralbidv 3122 . . . 4 (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦))
10 breq1 5081 . . . . 5 (𝑤 = 𝑧 → (𝑤𝑦𝑧𝑦))
1110cbvralvw 3380 . . . 4 (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
129, 11bitrdi 286 . . 3 (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
1312cbvrexvw 3381 . 2 (∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
147, 13sylib 217 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1789  wral 3065  wrex 3066   class class class wbr 5078  cmpt 5161  ran crn 5589  cr 10854  cle 10994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-mpt 5162  df-cnv 5596  df-dm 5598  df-rn 5599
This theorem is referenced by:  suprclrnmpt  42750  suprubrnmpt2  42751  suprubrnmpt  42752  rnmptbdlem  42754  supxrrernmpt  42915  suprleubrnmpt  42916  supminfrnmpt  42939
  Copyright terms: Public domain W3C validator