Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbdd Structured version   Visualization version   GIF version

Theorem rnmptbdd 43821
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbdd.x 𝑥𝜑
rnmptbdd.b (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
rnmptbdd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rnmptbdd
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnmptbdd.x . . 3 𝑥𝜑
2 rnmptbdd.b . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
3 breq2 5148 . . . . . 6 (𝑦 = 𝑣 → (𝐵𝑦𝐵𝑣))
43ralbidv 3178 . . . . 5 (𝑦 = 𝑣 → (∀𝑥𝐴 𝐵𝑦 ↔ ∀𝑥𝐴 𝐵𝑣))
54cbvrexvw 3236 . . . 4 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑣 ∈ ℝ ∀𝑥𝐴 𝐵𝑣)
62, 5sylib 217 . . 3 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑥𝐴 𝐵𝑣)
71, 6rnmptbddlem 43820 . 2 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣)
8 breq2 5148 . . . . 5 (𝑣 = 𝑦 → (𝑤𝑣𝑤𝑦))
98ralbidv 3178 . . . 4 (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦))
10 breq1 5147 . . . . 5 (𝑤 = 𝑧 → (𝑤𝑦𝑧𝑦))
1110cbvralvw 3235 . . . 4 (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
129, 11bitrdi 287 . . 3 (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
1312cbvrexvw 3236 . 2 (∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑣 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
147, 13sylib 217 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1786  wral 3062  wrex 3071   class class class wbr 5144  cmpt 5227  ran crn 5673  cr 11096  cle 11236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-mpt 5228  df-cnv 5680  df-dm 5682  df-rn 5683
This theorem is referenced by:  suprclrnmpt  43828  suprubrnmpt2  43829  suprubrnmpt  43830  rnmptbdlem  43832  supxrrernmpt  44004  suprleubrnmpt  44005  supminfrnmpt  44028
  Copyright terms: Public domain W3C validator