![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbdd | Structured version Visualization version GIF version |
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbdd.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbdd.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
Ref | Expression |
---|---|
rnmptbdd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptbdd.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptbdd.b | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
3 | breq2 5170 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑣)) | |
4 | 3 | ralbidv 3184 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣)) |
5 | 4 | cbvrexvw 3244 | . . . 4 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) |
6 | 2, 5 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑣) |
7 | 1, 6 | rnmptbddlem 45153 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣) |
8 | breq2 5170 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑤 ≤ 𝑣 ↔ 𝑤 ≤ 𝑦)) | |
9 | 8 | ralbidv 3184 | . . . 4 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦)) |
10 | breq1 5169 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦)) | |
11 | 10 | cbvralvw 3243 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
12 | 9, 11 | bitrdi 287 | . . 3 ⊢ (𝑣 = 𝑦 → (∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
13 | 12 | cbvrexvw 3244 | . 2 ⊢ (∃𝑣 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑣 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
14 | 7, 13 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1781 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ℝcr 11183 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: suprclrnmpt 45160 suprubrnmpt2 45161 suprubrnmpt 45162 rnmptbdlem 45164 supxrrernmpt 45336 suprleubrnmpt 45337 supminfrnmpt 45360 |
Copyright terms: Public domain | W3C validator |