Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpiord Structured version   Visualization version   GIF version

Theorem mulpiord 10111
 Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulpiord ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 5448 . 2 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 fvres 6523 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( ·o ‘⟨𝐴, 𝐵⟩))
3 df-ov 6985 . . . 4 (𝐴 ·N 𝐵) = ( ·N ‘⟨𝐴, 𝐵⟩)
4 df-mi 10100 . . . . 5 ·N = ( ·o ↾ (N × N))
54fveq1i 6505 . . . 4 ( ·N ‘⟨𝐴, 𝐵⟩) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2804 . . 3 (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
7 df-ov 6985 . . 3 (𝐴 ·o 𝐵) = ( ·o ‘⟨𝐴, 𝐵⟩)
82, 6, 73eqtr4g 2841 . 2 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
91, 8syl 17 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 387   = wceq 1508   ∈ wcel 2051  ⟨cop 4450   × cxp 5409   ↾ cres 5413  ‘cfv 6193  (class class class)co 6982   ·o comu 7909  Ncnpi 10070   ·N cmi 10072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pr 5190 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3419  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-opab 4997  df-xp 5417  df-res 5423  df-iota 6157  df-fv 6201  df-ov 6985  df-mi 10100 This theorem is referenced by:  mulidpi  10112  mulclpi  10119  mulcompi  10122  mulasspi  10123  distrpi  10124  mulcanpi  10126  ltmpi  10130
 Copyright terms: Public domain W3C validator