Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulpiord | Structured version Visualization version GIF version |
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5565 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | fvres 6682 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( ·o ‘〈𝐴, 𝐵〉)) | |
3 | df-ov 7159 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘〈𝐴, 𝐵〉) | |
4 | df-mi 10347 | . . . . 5 ⊢ ·N = ( ·o ↾ (N × N)) | |
5 | 4 | fveq1i 6664 | . . . 4 ⊢ ( ·N ‘〈𝐴, 𝐵〉) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2781 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
7 | df-ov 7159 | . . 3 ⊢ (𝐴 ·o 𝐵) = ( ·o ‘〈𝐴, 𝐵〉) | |
8 | 2, 6, 7 | 3eqtr4g 2818 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
9 | 1, 8 | syl 17 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 〈cop 4531 × cxp 5526 ↾ cres 5530 ‘cfv 6340 (class class class)co 7156 ·o comu 8116 Ncnpi 10317 ·N cmi 10319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-xp 5534 df-res 5540 df-iota 6299 df-fv 6348 df-ov 7159 df-mi 10347 |
This theorem is referenced by: mulidpi 10359 mulclpi 10366 mulcompi 10369 mulasspi 10370 distrpi 10371 mulcanpi 10373 ltmpi 10377 |
Copyright terms: Public domain | W3C validator |