![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulpiord | Structured version Visualization version GIF version |
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5448 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | fvres 6523 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( ·o ‘〈𝐴, 𝐵〉)) | |
3 | df-ov 6985 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘〈𝐴, 𝐵〉) | |
4 | df-mi 10100 | . . . . 5 ⊢ ·N = ( ·o ↾ (N × N)) | |
5 | 4 | fveq1i 6505 | . . . 4 ⊢ ( ·N ‘〈𝐴, 𝐵〉) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2804 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘〈𝐴, 𝐵〉) |
7 | df-ov 6985 | . . 3 ⊢ (𝐴 ·o 𝐵) = ( ·o ‘〈𝐴, 𝐵〉) | |
8 | 2, 6, 7 | 3eqtr4g 2841 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
9 | 1, 8 | syl 17 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 〈cop 4450 × cxp 5409 ↾ cres 5413 ‘cfv 6193 (class class class)co 6982 ·o comu 7909 Ncnpi 10070 ·N cmi 10072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pr 5190 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-br 4935 df-opab 4997 df-xp 5417 df-res 5423 df-iota 6157 df-fv 6201 df-ov 6985 df-mi 10100 |
This theorem is referenced by: mulidpi 10112 mulclpi 10119 mulcompi 10122 mulasspi 10123 distrpi 10124 mulcanpi 10126 ltmpi 10130 |
Copyright terms: Public domain | W3C validator |