MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpiord Structured version   Visualization version   GIF version

Theorem mulpiord 10954
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulpiord ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 5737 . 2 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 fvres 6939 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( ·o ‘⟨𝐴, 𝐵⟩))
3 df-ov 7451 . . . 4 (𝐴 ·N 𝐵) = ( ·N ‘⟨𝐴, 𝐵⟩)
4 df-mi 10943 . . . . 5 ·N = ( ·o ↾ (N × N))
54fveq1i 6921 . . . 4 ( ·N ‘⟨𝐴, 𝐵⟩) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2768 . . 3 (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
7 df-ov 7451 . . 3 (𝐴 ·o 𝐵) = ( ·o ‘⟨𝐴, 𝐵⟩)
82, 6, 73eqtr4g 2805 . 2 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
91, 8syl 17 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cop 4654   × cxp 5698  cres 5702  cfv 6573  (class class class)co 7448   ·o comu 8520  Ncnpi 10913   ·N cmi 10915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-res 5712  df-iota 6525  df-fv 6581  df-ov 7451  df-mi 10943
This theorem is referenced by:  mulidpi  10955  mulclpi  10962  mulcompi  10965  mulasspi  10966  distrpi  10967  mulcanpi  10969  ltmpi  10973
  Copyright terms: Public domain W3C validator