![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulpiord | Structured version Visualization version GIF version |
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5713 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ⟨𝐴, 𝐵⟩ ∈ (N × N)) | |
2 | fvres 6910 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( ·o ‘⟨𝐴, 𝐵⟩)) | |
3 | df-ov 7415 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘⟨𝐴, 𝐵⟩) | |
4 | df-mi 10872 | . . . . 5 ⊢ ·N = ( ·o ↾ (N × N)) | |
5 | 4 | fveq1i 6892 | . . . 4 ⊢ ( ·N ‘⟨𝐴, 𝐵⟩) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) |
6 | 3, 5 | eqtri 2759 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) |
7 | df-ov 7415 | . . 3 ⊢ (𝐴 ·o 𝐵) = ( ·o ‘⟨𝐴, 𝐵⟩) | |
8 | 2, 6, 7 | 3eqtr4g 2796 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
9 | 1, 8 | syl 17 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 × cxp 5674 ↾ cres 5678 ‘cfv 6543 (class class class)co 7412 ·o comu 8467 Ncnpi 10842 ·N cmi 10844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-res 5688 df-iota 6495 df-fv 6551 df-ov 7415 df-mi 10872 |
This theorem is referenced by: mulidpi 10884 mulclpi 10891 mulcompi 10894 mulasspi 10895 distrpi 10896 mulcanpi 10898 ltmpi 10902 |
Copyright terms: Public domain | W3C validator |