MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpiord Structured version   Visualization version   GIF version

Theorem mulpiord 10899
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulpiord ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 5691 . 2 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 fvres 6895 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( ·o ‘⟨𝐴, 𝐵⟩))
3 df-ov 7408 . . . 4 (𝐴 ·N 𝐵) = ( ·N ‘⟨𝐴, 𝐵⟩)
4 df-mi 10888 . . . . 5 ·N = ( ·o ↾ (N × N))
54fveq1i 6877 . . . 4 ( ·N ‘⟨𝐴, 𝐵⟩) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2758 . . 3 (𝐴 ·N 𝐵) = (( ·o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
7 df-ov 7408 . . 3 (𝐴 ·o 𝐵) = ( ·o ‘⟨𝐴, 𝐵⟩)
82, 6, 73eqtr4g 2795 . 2 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
91, 8syl 17 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4607   × cxp 5652  cres 5656  cfv 6531  (class class class)co 7405   ·o comu 8478  Ncnpi 10858   ·N cmi 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-res 5666  df-iota 6484  df-fv 6539  df-ov 7408  df-mi 10888
This theorem is referenced by:  mulidpi  10900  mulclpi  10907  mulcompi  10910  mulasspi  10911  distrpi  10912  mulcanpi  10914  ltmpi  10918
  Copyright terms: Public domain W3C validator