![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addpiord | Structured version Visualization version GIF version |
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5712 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ⟨𝐴, 𝐵⟩ ∈ (N × N)) | |
2 | fvres 6907 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( +o ‘⟨𝐴, 𝐵⟩)) | |
3 | df-ov 7408 | . . . 4 ⊢ (𝐴 +N 𝐵) = ( +N ‘⟨𝐴, 𝐵⟩) | |
4 | df-pli 10864 | . . . . 5 ⊢ +N = ( +o ↾ (N × N)) | |
5 | 4 | fveq1i 6889 | . . . 4 ⊢ ( +N ‘⟨𝐴, 𝐵⟩) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) |
6 | 3, 5 | eqtri 2760 | . . 3 ⊢ (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) |
7 | df-ov 7408 | . . 3 ⊢ (𝐴 +o 𝐵) = ( +o ‘⟨𝐴, 𝐵⟩) | |
8 | 2, 6, 7 | 3eqtr4g 2797 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
9 | 1, 8 | syl 17 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4633 × cxp 5673 ↾ cres 5677 ‘cfv 6540 (class class class)co 7405 +o coa 8459 Ncnpi 10835 +N cpli 10836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-res 5687 df-iota 6492 df-fv 6548 df-ov 7408 df-pli 10864 |
This theorem is referenced by: addclpi 10883 addcompi 10885 addasspi 10886 distrpi 10889 addcanpi 10890 addnidpi 10892 ltexpi 10893 ltapi 10894 1lt2pi 10896 indpi 10898 |
Copyright terms: Public domain | W3C validator |