Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addpiord | Structured version Visualization version GIF version |
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5566 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | fvres 6683 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) = ( +o ‘〈𝐴, 𝐵〉)) | |
3 | df-ov 7160 | . . . 4 ⊢ (𝐴 +N 𝐵) = ( +N ‘〈𝐴, 𝐵〉) | |
4 | df-pli 10347 | . . . . 5 ⊢ +N = ( +o ↾ (N × N)) | |
5 | 4 | fveq1i 6665 | . . . 4 ⊢ ( +N ‘〈𝐴, 𝐵〉) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2782 | . . 3 ⊢ (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘〈𝐴, 𝐵〉) |
7 | df-ov 7160 | . . 3 ⊢ (𝐴 +o 𝐵) = ( +o ‘〈𝐴, 𝐵〉) | |
8 | 2, 6, 7 | 3eqtr4g 2819 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
9 | 1, 8 | syl 17 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 〈cop 4532 × cxp 5527 ↾ cres 5531 ‘cfv 6341 (class class class)co 7157 +o coa 8116 Ncnpi 10318 +N cpli 10319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-xp 5535 df-res 5541 df-iota 6300 df-fv 6349 df-ov 7160 df-pli 10347 |
This theorem is referenced by: addclpi 10366 addcompi 10368 addasspi 10369 distrpi 10372 addcanpi 10373 addnidpi 10375 ltexpi 10376 ltapi 10377 1lt2pi 10379 indpi 10381 |
Copyright terms: Public domain | W3C validator |