MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpiord Structured version   Visualization version   GIF version

Theorem addpiord 10775
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addpiord ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))

Proof of Theorem addpiord
StepHypRef Expression
1 opelxpi 5651 . 2 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 fvres 6841 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( +o ‘⟨𝐴, 𝐵⟩))
3 df-ov 7349 . . . 4 (𝐴 +N 𝐵) = ( +N ‘⟨𝐴, 𝐵⟩)
4 df-pli 10764 . . . . 5 +N = ( +o ↾ (N × N))
54fveq1i 6823 . . . 4 ( +N ‘⟨𝐴, 𝐵⟩) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2754 . . 3 (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
7 df-ov 7349 . . 3 (𝐴 +o 𝐵) = ( +o ‘⟨𝐴, 𝐵⟩)
82, 6, 73eqtr4g 2791 . 2 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
91, 8syl 17 1 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4579   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346   +o coa 8382  Ncnpi 10735   +N cpli 10736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626  df-iota 6437  df-fv 6489  df-ov 7349  df-pli 10764
This theorem is referenced by:  addclpi  10783  addcompi  10785  addasspi  10786  distrpi  10789  addcanpi  10790  addnidpi  10792  ltexpi  10793  ltapi  10794  1lt2pi  10796  indpi  10798
  Copyright terms: Public domain W3C validator