MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpiord Structured version   Visualization version   GIF version

Theorem addpiord 10837
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addpiord ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))

Proof of Theorem addpiord
StepHypRef Expression
1 opelxpi 5675 . 2 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 fvres 6877 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩) = ( +o ‘⟨𝐴, 𝐵⟩))
3 df-ov 7390 . . . 4 (𝐴 +N 𝐵) = ( +N ‘⟨𝐴, 𝐵⟩)
4 df-pli 10826 . . . . 5 +N = ( +o ↾ (N × N))
54fveq1i 6859 . . . 4 ( +N ‘⟨𝐴, 𝐵⟩) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2752 . . 3 (𝐴 +N 𝐵) = (( +o ↾ (N × N))‘⟨𝐴, 𝐵⟩)
7 df-ov 7390 . . 3 (𝐴 +o 𝐵) = ( +o ‘⟨𝐴, 𝐵⟩)
82, 6, 73eqtr4g 2789 . 2 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
91, 8syl 17 1 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387   +o coa 8431  Ncnpi 10797   +N cpli 10798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-iota 6464  df-fv 6519  df-ov 7390  df-pli 10826
This theorem is referenced by:  addclpi  10845  addcompi  10847  addasspi  10848  distrpi  10851  addcanpi  10852  addnidpi  10854  ltexpi  10855  ltapi  10856  1lt2pi  10858  indpi  10860
  Copyright terms: Public domain W3C validator