MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmfvrcl Structured version   Visualization version   GIF version

Theorem ndmfvrcl 6921
Description: Reverse closure law for function with the empty set not in its domain. (Contributed by NM, 26-Apr-1996.)
Hypotheses
Ref Expression
ndmfvrcl.1 dom 𝐹 = 𝑆
ndmfvrcl.2 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmfvrcl ((𝐹𝐴) ∈ 𝑆𝐴𝑆)

Proof of Theorem ndmfvrcl
StepHypRef Expression
1 ndmfvrcl.2 . . . 4 ¬ ∅ ∈ 𝑆
2 ndmfv 6920 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
32eleq1d 2812 . . . 4 𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
41, 3mtbiri 327 . . 3 𝐴 ∈ dom 𝐹 → ¬ (𝐹𝐴) ∈ 𝑆)
54con4i 114 . 2 ((𝐹𝐴) ∈ 𝑆𝐴 ∈ dom 𝐹)
6 ndmfvrcl.1 . 2 dom 𝐹 = 𝑆
75, 6eleqtrdi 2837 1 ((𝐹𝐴) ∈ 𝑆𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  c0 4317  dom cdm 5669  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-dm 5679  df-iota 6489  df-fv 6545
This theorem is referenced by:  lterpq  10967  ltrnq  10976  reclem2pr  11045  msrrcl  35062
  Copyright terms: Public domain W3C validator