MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmfvrcl Structured version   Visualization version   GIF version

Theorem ndmfvrcl 6855
Description: Reverse closure law for function with the empty set not in its domain (if 𝑅 = 𝑆). (Contributed by NM, 26-Apr-1996.) The class containing the function value does not have to be the domain. (Revised by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
ndmfvrcl.1 dom 𝐹 = 𝑆
ndmfvrcl.2 ¬ ∅ ∈ 𝑅
Assertion
Ref Expression
ndmfvrcl ((𝐹𝐴) ∈ 𝑅𝐴𝑆)

Proof of Theorem ndmfvrcl
StepHypRef Expression
1 ndmfvrcl.2 . . . 4 ¬ ∅ ∈ 𝑅
2 ndmfv 6854 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
32eleq1d 2816 . . . 4 𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝑅 ↔ ∅ ∈ 𝑅))
41, 3mtbiri 327 . . 3 𝐴 ∈ dom 𝐹 → ¬ (𝐹𝐴) ∈ 𝑅)
54con4i 114 . 2 ((𝐹𝐴) ∈ 𝑅𝐴 ∈ dom 𝐹)
6 ndmfvrcl.1 . 2 dom 𝐹 = 𝑆
75, 6eleqtrdi 2841 1 ((𝐹𝐴) ∈ 𝑅𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  c0 4283  dom cdm 5616  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-dm 5626  df-iota 6437  df-fv 6489
This theorem is referenced by:  lterpq  10861  ltrnq  10870  reclem2pr  10939  msrrcl  35585  idfurcl  49136
  Copyright terms: Public domain W3C validator