MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmfvrcl Structured version   Visualization version   GIF version

Theorem ndmfvrcl 6805
Description: Reverse closure law for function with the empty set not in its domain. (Contributed by NM, 26-Apr-1996.)
Hypotheses
Ref Expression
ndmfvrcl.1 dom 𝐹 = 𝑆
ndmfvrcl.2 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmfvrcl ((𝐹𝐴) ∈ 𝑆𝐴𝑆)

Proof of Theorem ndmfvrcl
StepHypRef Expression
1 ndmfvrcl.2 . . . 4 ¬ ∅ ∈ 𝑆
2 ndmfv 6804 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
32eleq1d 2823 . . . 4 𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
41, 3mtbiri 327 . . 3 𝐴 ∈ dom 𝐹 → ¬ (𝐹𝐴) ∈ 𝑆)
54con4i 114 . 2 ((𝐹𝐴) ∈ 𝑆𝐴 ∈ dom 𝐹)
6 ndmfvrcl.1 . 2 dom 𝐹 = 𝑆
75, 6eleqtrdi 2849 1 ((𝐹𝐴) ∈ 𝑆𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  c0 4256  dom cdm 5589  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441
This theorem is referenced by:  lterpq  10726  ltrnq  10735  reclem2pr  10804  msrrcl  33505
  Copyright terms: Public domain W3C validator