![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmfvrcl | Structured version Visualization version GIF version |
Description: Reverse closure law for function with the empty set not in its domain. (Contributed by NM, 26-Apr-1996.) |
Ref | Expression |
---|---|
ndmfvrcl.1 | ⊢ dom 𝐹 = 𝑆 |
ndmfvrcl.2 | ⊢ ¬ ∅ ∈ 𝑆 |
Ref | Expression |
---|---|
ndmfvrcl | ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmfvrcl.2 | . . . 4 ⊢ ¬ ∅ ∈ 𝑆 | |
2 | ndmfv 6937 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
3 | 2 | eleq1d 2814 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
4 | 1, 3 | mtbiri 326 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ¬ (𝐹‘𝐴) ∈ 𝑆) |
5 | 4 | con4i 114 | . 2 ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ dom 𝐹) |
6 | ndmfvrcl.1 | . 2 ⊢ dom 𝐹 = 𝑆 | |
7 | 5, 6 | eleqtrdi 2839 | 1 ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 ∅c0 4326 dom cdm 5682 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-dm 5692 df-iota 6505 df-fv 6561 |
This theorem is referenced by: lterpq 11001 ltrnq 11010 reclem2pr 11079 msrrcl 35186 |
Copyright terms: Public domain | W3C validator |