MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmfvrcl Structured version   Visualization version   GIF version

Theorem ndmfvrcl 6928
Description: Reverse closure law for function with the empty set not in its domain. (Contributed by NM, 26-Apr-1996.)
Hypotheses
Ref Expression
ndmfvrcl.1 dom 𝐹 = 𝑆
ndmfvrcl.2 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmfvrcl ((𝐹𝐴) ∈ 𝑆𝐴𝑆)

Proof of Theorem ndmfvrcl
StepHypRef Expression
1 ndmfvrcl.2 . . . 4 ¬ ∅ ∈ 𝑆
2 ndmfv 6927 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
32eleq1d 2819 . . . 4 𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
41, 3mtbiri 327 . . 3 𝐴 ∈ dom 𝐹 → ¬ (𝐹𝐴) ∈ 𝑆)
54con4i 114 . 2 ((𝐹𝐴) ∈ 𝑆𝐴 ∈ dom 𝐹)
6 ndmfvrcl.1 . 2 dom 𝐹 = 𝑆
75, 6eleqtrdi 2844 1 ((𝐹𝐴) ∈ 𝑆𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  c0 4323  dom cdm 5677  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-dm 5687  df-iota 6496  df-fv 6552
This theorem is referenced by:  lterpq  10965  ltrnq  10974  reclem2pr  11043  msrrcl  34534
  Copyright terms: Public domain W3C validator