| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfvrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure law for function with the empty set not in its domain (if 𝑅 = 𝑆). (Contributed by NM, 26-Apr-1996.) The class containing the function value does not have to be the domain. (Revised by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| ndmfvrcl.1 | ⊢ dom 𝐹 = 𝑆 |
| ndmfvrcl.2 | ⊢ ¬ ∅ ∈ 𝑅 |
| Ref | Expression |
|---|---|
| ndmfvrcl | ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmfvrcl.2 | . . . 4 ⊢ ¬ ∅ ∈ 𝑅 | |
| 2 | ndmfv 6862 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 3 | 2 | eleq1d 2818 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝑅 ↔ ∅ ∈ 𝑅)) |
| 4 | 1, 3 | mtbiri 327 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ¬ (𝐹‘𝐴) ∈ 𝑅) |
| 5 | 4 | con4i 114 | . 2 ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ dom 𝐹) |
| 6 | ndmfvrcl.1 | . 2 ⊢ dom 𝐹 = 𝑆 | |
| 7 | 5, 6 | eleqtrdi 2843 | 1 ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∅c0 4282 dom cdm 5621 ‘cfv 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-dm 5631 df-iota 6444 df-fv 6496 |
| This theorem is referenced by: lterpq 10870 ltrnq 10879 reclem2pr 10948 msrrcl 35610 idfurcl 49226 |
| Copyright terms: Public domain | W3C validator |