![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmfvrcl | Structured version Visualization version GIF version |
Description: Reverse closure law for function with the empty set not in its domain. (Contributed by NM, 26-Apr-1996.) |
Ref | Expression |
---|---|
ndmfvrcl.1 | ⊢ dom 𝐹 = 𝑆 |
ndmfvrcl.2 | ⊢ ¬ ∅ ∈ 𝑆 |
Ref | Expression |
---|---|
ndmfvrcl | ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmfvrcl.2 | . . . 4 ⊢ ¬ ∅ ∈ 𝑆 | |
2 | ndmfv 6942 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
3 | 2 | eleq1d 2824 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
4 | 1, 3 | mtbiri 327 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ¬ (𝐹‘𝐴) ∈ 𝑆) |
5 | 4 | con4i 114 | . 2 ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ dom 𝐹) |
6 | ndmfvrcl.1 | . 2 ⊢ dom 𝐹 = 𝑆 | |
7 | 5, 6 | eleqtrdi 2849 | 1 ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 ∅c0 4339 dom cdm 5689 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 |
This theorem is referenced by: lterpq 11008 ltrnq 11017 reclem2pr 11086 msrrcl 35528 |
Copyright terms: Public domain | W3C validator |