![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmfvrcl | Structured version Visualization version GIF version |
Description: Reverse closure law for function with the empty set not in its domain. (Contributed by NM, 26-Apr-1996.) |
Ref | Expression |
---|---|
ndmfvrcl.1 | ⊢ dom 𝐹 = 𝑆 |
ndmfvrcl.2 | ⊢ ¬ ∅ ∈ 𝑆 |
Ref | Expression |
---|---|
ndmfvrcl | ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmfvrcl.2 | . . . 4 ⊢ ¬ ∅ ∈ 𝑆 | |
2 | ndmfv 6920 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
3 | 2 | eleq1d 2812 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
4 | 1, 3 | mtbiri 327 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ¬ (𝐹‘𝐴) ∈ 𝑆) |
5 | 4 | con4i 114 | . 2 ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ dom 𝐹) |
6 | ndmfvrcl.1 | . 2 ⊢ dom 𝐹 = 𝑆 | |
7 | 5, 6 | eleqtrdi 2837 | 1 ⊢ ((𝐹‘𝐴) ∈ 𝑆 → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 ∅c0 4317 dom cdm 5669 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-dm 5679 df-iota 6489 df-fv 6545 |
This theorem is referenced by: lterpq 10967 ltrnq 10976 reclem2pr 11045 msrrcl 35062 |
Copyright terms: Public domain | W3C validator |