| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfvrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure law for function with the empty set not in its domain (if 𝑅 = 𝑆). (Contributed by NM, 26-Apr-1996.) The class containing the function value does not have to be the domain. (Revised by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| ndmfvrcl.1 | ⊢ dom 𝐹 = 𝑆 |
| ndmfvrcl.2 | ⊢ ¬ ∅ ∈ 𝑅 |
| Ref | Expression |
|---|---|
| ndmfvrcl | ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmfvrcl.2 | . . . 4 ⊢ ¬ ∅ ∈ 𝑅 | |
| 2 | ndmfv 6896 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 3 | 2 | eleq1d 2814 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝑅 ↔ ∅ ∈ 𝑅)) |
| 4 | 1, 3 | mtbiri 327 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ¬ (𝐹‘𝐴) ∈ 𝑅) |
| 5 | 4 | con4i 114 | . 2 ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ dom 𝐹) |
| 6 | ndmfvrcl.1 | . 2 ⊢ dom 𝐹 = 𝑆 | |
| 7 | 5, 6 | eleqtrdi 2839 | 1 ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 dom cdm 5641 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: lterpq 10930 ltrnq 10939 reclem2pr 11008 msrrcl 35537 idfurcl 49091 |
| Copyright terms: Public domain | W3C validator |