MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmfvrcl Structured version   Visualization version   GIF version

Theorem ndmfvrcl 6917
Description: Reverse closure law for function with the empty set not in its domain (if 𝑅 = 𝑆). (Contributed by NM, 26-Apr-1996.) The class containing the function value does not have to be the domain. (Revised by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
ndmfvrcl.1 dom 𝐹 = 𝑆
ndmfvrcl.2 ¬ ∅ ∈ 𝑅
Assertion
Ref Expression
ndmfvrcl ((𝐹𝐴) ∈ 𝑅𝐴𝑆)

Proof of Theorem ndmfvrcl
StepHypRef Expression
1 ndmfvrcl.2 . . . 4 ¬ ∅ ∈ 𝑅
2 ndmfv 6916 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
32eleq1d 2820 . . . 4 𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ 𝑅 ↔ ∅ ∈ 𝑅))
41, 3mtbiri 327 . . 3 𝐴 ∈ dom 𝐹 → ¬ (𝐹𝐴) ∈ 𝑅)
54con4i 114 . 2 ((𝐹𝐴) ∈ 𝑅𝐴 ∈ dom 𝐹)
6 ndmfvrcl.1 . 2 dom 𝐹 = 𝑆
75, 6eleqtrdi 2845 1 ((𝐹𝐴) ∈ 𝑅𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  c0 4313  dom cdm 5659  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-dm 5669  df-iota 6489  df-fv 6544
This theorem is referenced by:  lterpq  10989  ltrnq  10998  reclem2pr  11067  msrrcl  35570  idfurcl  49025
  Copyright terms: Public domain W3C validator