| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmfvrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure law for function with the empty set not in its domain (if 𝑅 = 𝑆). (Contributed by NM, 26-Apr-1996.) The class containing the function value does not have to be the domain. (Revised by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| ndmfvrcl.1 | ⊢ dom 𝐹 = 𝑆 |
| ndmfvrcl.2 | ⊢ ¬ ∅ ∈ 𝑅 |
| Ref | Expression |
|---|---|
| ndmfvrcl | ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmfvrcl.2 | . . . 4 ⊢ ¬ ∅ ∈ 𝑅 | |
| 2 | ndmfv 6859 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 3 | 2 | eleq1d 2813 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ 𝑅 ↔ ∅ ∈ 𝑅)) |
| 4 | 1, 3 | mtbiri 327 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ¬ (𝐹‘𝐴) ∈ 𝑅) |
| 5 | 4 | con4i 114 | . 2 ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ dom 𝐹) |
| 6 | ndmfvrcl.1 | . 2 ⊢ dom 𝐹 = 𝑆 | |
| 7 | 5, 6 | eleqtrdi 2838 | 1 ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4286 dom cdm 5623 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: lterpq 10883 ltrnq 10892 reclem2pr 10961 msrrcl 35518 idfurcl 49087 |
| Copyright terms: Public domain | W3C validator |