Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > msrrcl | Structured version Visualization version GIF version |
Description: If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
msrf.r | ⊢ 𝑅 = (mStRed‘𝑇) |
Ref | Expression |
---|---|
msrrcl | ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpstssv.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
2 | msrf.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
3 | 1, 2 | msrf 33034 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
4 | 3 | ffvelrni 6848 | . . 3 ⊢ (𝑋 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃) |
5 | 4 | a1i 11 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃)) |
6 | 3 | ffvelrni 6848 | . . 3 ⊢ (𝑌 ∈ 𝑃 → (𝑅‘𝑌) ∈ 𝑃) |
7 | eleq1 2840 | . . 3 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ 𝑃 ↔ (𝑅‘𝑌) ∈ 𝑃)) | |
8 | 6, 7 | syl5ibr 249 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑌 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃)) |
9 | 3 | fdmi 6515 | . . . . . 6 ⊢ dom 𝑅 = 𝑃 |
10 | 0nelxp 5563 | . . . . . . 7 ⊢ ¬ ∅ ∈ ((V × V) × V) | |
11 | 1 | mpstssv 33031 | . . . . . . . 8 ⊢ 𝑃 ⊆ ((V × V) × V) |
12 | 11 | sseli 3891 | . . . . . . 7 ⊢ (∅ ∈ 𝑃 → ∅ ∈ ((V × V) × V)) |
13 | 10, 12 | mto 200 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑃 |
14 | 9, 13 | ndmfvrcl 6695 | . . . . 5 ⊢ ((𝑅‘𝑋) ∈ 𝑃 → 𝑋 ∈ 𝑃) |
15 | 14 | adantl 485 | . . . 4 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → 𝑋 ∈ 𝑃) |
16 | 7 | biimpa 480 | . . . . 5 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → (𝑅‘𝑌) ∈ 𝑃) |
17 | 9, 13 | ndmfvrcl 6695 | . . . . 5 ⊢ ((𝑅‘𝑌) ∈ 𝑃 → 𝑌 ∈ 𝑃) |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → 𝑌 ∈ 𝑃) |
19 | 15, 18 | 2thd 268 | . . 3 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
20 | 19 | ex 416 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ 𝑃 → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃))) |
21 | 5, 8, 20 | pm5.21ndd 384 | 1 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∅c0 4228 × cxp 5527 ‘cfv 6341 mPreStcmpst 32965 mStRedcmsr 32966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-ot 4535 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-1st 7700 df-2nd 7701 df-mpst 32985 df-msr 32986 |
This theorem is referenced by: elmthm 33068 |
Copyright terms: Public domain | W3C validator |