Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrrcl Structured version   Visualization version   GIF version

Theorem msrrcl 32785
Description: If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
msrf.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrrcl ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑃𝑌𝑃))

Proof of Theorem msrrcl
StepHypRef Expression
1 mpstssv.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 msrf.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 32784 . . . 4 𝑅:𝑃𝑃
43ffvelrni 6844 . . 3 (𝑋𝑃 → (𝑅𝑋) ∈ 𝑃)
54a1i 11 . 2 ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑃 → (𝑅𝑋) ∈ 𝑃))
63ffvelrni 6844 . . 3 (𝑌𝑃 → (𝑅𝑌) ∈ 𝑃)
7 eleq1 2900 . . 3 ((𝑅𝑋) = (𝑅𝑌) → ((𝑅𝑋) ∈ 𝑃 ↔ (𝑅𝑌) ∈ 𝑃))
86, 7syl5ibr 248 . 2 ((𝑅𝑋) = (𝑅𝑌) → (𝑌𝑃 → (𝑅𝑋) ∈ 𝑃))
93fdmi 6518 . . . . . 6 dom 𝑅 = 𝑃
10 0nelxp 5583 . . . . . . 7 ¬ ∅ ∈ ((V × V) × V)
111mpstssv 32781 . . . . . . . 8 𝑃 ⊆ ((V × V) × V)
1211sseli 3962 . . . . . . 7 (∅ ∈ 𝑃 → ∅ ∈ ((V × V) × V))
1310, 12mto 199 . . . . . 6 ¬ ∅ ∈ 𝑃
149, 13ndmfvrcl 6695 . . . . 5 ((𝑅𝑋) ∈ 𝑃𝑋𝑃)
1514adantl 484 . . . 4 (((𝑅𝑋) = (𝑅𝑌) ∧ (𝑅𝑋) ∈ 𝑃) → 𝑋𝑃)
167biimpa 479 . . . . 5 (((𝑅𝑋) = (𝑅𝑌) ∧ (𝑅𝑋) ∈ 𝑃) → (𝑅𝑌) ∈ 𝑃)
179, 13ndmfvrcl 6695 . . . . 5 ((𝑅𝑌) ∈ 𝑃𝑌𝑃)
1816, 17syl 17 . . . 4 (((𝑅𝑋) = (𝑅𝑌) ∧ (𝑅𝑋) ∈ 𝑃) → 𝑌𝑃)
1915, 182thd 267 . . 3 (((𝑅𝑋) = (𝑅𝑌) ∧ (𝑅𝑋) ∈ 𝑃) → (𝑋𝑃𝑌𝑃))
2019ex 415 . 2 ((𝑅𝑋) = (𝑅𝑌) → ((𝑅𝑋) ∈ 𝑃 → (𝑋𝑃𝑌𝑃)))
215, 8, 20pm5.21ndd 383 1 ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑃𝑌𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  c0 4290   × cxp 5547  cfv 6349  mPreStcmpst 32715  mStRedcmsr 32716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-ot 4569  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-1st 7683  df-2nd 7684  df-mpst 32735  df-msr 32736
This theorem is referenced by:  elmthm  32818
  Copyright terms: Public domain W3C validator