![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msrrcl | Structured version Visualization version GIF version |
Description: If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
msrf.r | ⊢ 𝑅 = (mStRed‘𝑇) |
Ref | Expression |
---|---|
msrrcl | ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpstssv.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
2 | msrf.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
3 | 1, 2 | msrf 35539 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
4 | 3 | ffvelcdmi 7107 | . . 3 ⊢ (𝑋 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃) |
5 | 4 | a1i 11 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃)) |
6 | 3 | ffvelcdmi 7107 | . . 3 ⊢ (𝑌 ∈ 𝑃 → (𝑅‘𝑌) ∈ 𝑃) |
7 | eleq1 2828 | . . 3 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ 𝑃 ↔ (𝑅‘𝑌) ∈ 𝑃)) | |
8 | 6, 7 | imbitrrid 246 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑌 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃)) |
9 | 3 | fdmi 6752 | . . . . . 6 ⊢ dom 𝑅 = 𝑃 |
10 | 0nelxp 5724 | . . . . . . 7 ⊢ ¬ ∅ ∈ ((V × V) × V) | |
11 | 1 | mpstssv 35536 | . . . . . . . 8 ⊢ 𝑃 ⊆ ((V × V) × V) |
12 | 11 | sseli 3992 | . . . . . . 7 ⊢ (∅ ∈ 𝑃 → ∅ ∈ ((V × V) × V)) |
13 | 10, 12 | mto 197 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑃 |
14 | 9, 13 | ndmfvrcl 6947 | . . . . 5 ⊢ ((𝑅‘𝑋) ∈ 𝑃 → 𝑋 ∈ 𝑃) |
15 | 14 | adantl 481 | . . . 4 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → 𝑋 ∈ 𝑃) |
16 | 7 | biimpa 476 | . . . . 5 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → (𝑅‘𝑌) ∈ 𝑃) |
17 | 9, 13 | ndmfvrcl 6947 | . . . . 5 ⊢ ((𝑅‘𝑌) ∈ 𝑃 → 𝑌 ∈ 𝑃) |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → 𝑌 ∈ 𝑃) |
19 | 15, 18 | 2thd 265 | . . 3 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
20 | 19 | ex 412 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ 𝑃 → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃))) |
21 | 5, 8, 20 | pm5.21ndd 379 | 1 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∅c0 4340 × cxp 5688 ‘cfv 6566 mPreStcmpst 35470 mStRedcmsr 35471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-ot 4641 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-1st 8019 df-2nd 8020 df-mpst 35490 df-msr 35491 |
This theorem is referenced by: elmthm 35573 |
Copyright terms: Public domain | W3C validator |