![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msrrcl | Structured version Visualization version GIF version |
Description: If π and π have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mpstssv.p | β’ π = (mPreStβπ) |
msrf.r | β’ π = (mStRedβπ) |
Ref | Expression |
---|---|
msrrcl | β’ ((π βπ) = (π βπ) β (π β π β π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpstssv.p | . . . . 5 β’ π = (mPreStβπ) | |
2 | msrf.r | . . . . 5 β’ π = (mStRedβπ) | |
3 | 1, 2 | msrf 34528 | . . . 4 β’ π :πβΆπ |
4 | 3 | ffvelcdmi 7085 | . . 3 β’ (π β π β (π βπ) β π) |
5 | 4 | a1i 11 | . 2 β’ ((π βπ) = (π βπ) β (π β π β (π βπ) β π)) |
6 | 3 | ffvelcdmi 7085 | . . 3 β’ (π β π β (π βπ) β π) |
7 | eleq1 2821 | . . 3 β’ ((π βπ) = (π βπ) β ((π βπ) β π β (π βπ) β π)) | |
8 | 6, 7 | imbitrrid 245 | . 2 β’ ((π βπ) = (π βπ) β (π β π β (π βπ) β π)) |
9 | 3 | fdmi 6729 | . . . . . 6 β’ dom π = π |
10 | 0nelxp 5710 | . . . . . . 7 β’ Β¬ β β ((V Γ V) Γ V) | |
11 | 1 | mpstssv 34525 | . . . . . . . 8 β’ π β ((V Γ V) Γ V) |
12 | 11 | sseli 3978 | . . . . . . 7 β’ (β β π β β β ((V Γ V) Γ V)) |
13 | 10, 12 | mto 196 | . . . . . 6 β’ Β¬ β β π |
14 | 9, 13 | ndmfvrcl 6927 | . . . . 5 β’ ((π βπ) β π β π β π) |
15 | 14 | adantl 482 | . . . 4 β’ (((π βπ) = (π βπ) β§ (π βπ) β π) β π β π) |
16 | 7 | biimpa 477 | . . . . 5 β’ (((π βπ) = (π βπ) β§ (π βπ) β π) β (π βπ) β π) |
17 | 9, 13 | ndmfvrcl 6927 | . . . . 5 β’ ((π βπ) β π β π β π) |
18 | 16, 17 | syl 17 | . . . 4 β’ (((π βπ) = (π βπ) β§ (π βπ) β π) β π β π) |
19 | 15, 18 | 2thd 264 | . . 3 β’ (((π βπ) = (π βπ) β§ (π βπ) β π) β (π β π β π β π)) |
20 | 19 | ex 413 | . 2 β’ ((π βπ) = (π βπ) β ((π βπ) β π β (π β π β π β π))) |
21 | 5, 8, 20 | pm5.21ndd 380 | 1 β’ ((π βπ) = (π βπ) β (π β π β π β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4322 Γ cxp 5674 βcfv 6543 mPreStcmpst 34459 mStRedcmsr 34460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1st 7974 df-2nd 7975 df-mpst 34479 df-msr 34480 |
This theorem is referenced by: elmthm 34562 |
Copyright terms: Public domain | W3C validator |