| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msrrcl | Structured version Visualization version GIF version | ||
| Description: If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mpstssv.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| msrf.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| Ref | Expression |
|---|---|
| msrrcl | ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpstssv.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | msrf.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 3 | 1, 2 | msrf 35502 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
| 4 | 3 | ffvelcdmi 7037 | . . 3 ⊢ (𝑋 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃) |
| 5 | 4 | a1i 11 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃)) |
| 6 | 3 | ffvelcdmi 7037 | . . 3 ⊢ (𝑌 ∈ 𝑃 → (𝑅‘𝑌) ∈ 𝑃) |
| 7 | eleq1 2816 | . . 3 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ 𝑃 ↔ (𝑅‘𝑌) ∈ 𝑃)) | |
| 8 | 6, 7 | imbitrrid 246 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑌 ∈ 𝑃 → (𝑅‘𝑋) ∈ 𝑃)) |
| 9 | 3 | fdmi 6681 | . . . . . 6 ⊢ dom 𝑅 = 𝑃 |
| 10 | 0nelxp 5665 | . . . . . . 7 ⊢ ¬ ∅ ∈ ((V × V) × V) | |
| 11 | 1 | mpstssv 35499 | . . . . . . . 8 ⊢ 𝑃 ⊆ ((V × V) × V) |
| 12 | 11 | sseli 3939 | . . . . . . 7 ⊢ (∅ ∈ 𝑃 → ∅ ∈ ((V × V) × V)) |
| 13 | 10, 12 | mto 197 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑃 |
| 14 | 9, 13 | ndmfvrcl 6876 | . . . . 5 ⊢ ((𝑅‘𝑋) ∈ 𝑃 → 𝑋 ∈ 𝑃) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → 𝑋 ∈ 𝑃) |
| 16 | 7 | biimpa 476 | . . . . 5 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → (𝑅‘𝑌) ∈ 𝑃) |
| 17 | 9, 13 | ndmfvrcl 6876 | . . . . 5 ⊢ ((𝑅‘𝑌) ∈ 𝑃 → 𝑌 ∈ 𝑃) |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → 𝑌 ∈ 𝑃) |
| 19 | 15, 18 | 2thd 265 | . . 3 ⊢ (((𝑅‘𝑋) = (𝑅‘𝑌) ∧ (𝑅‘𝑋) ∈ 𝑃) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
| 20 | 19 | ex 412 | . 2 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → ((𝑅‘𝑋) ∈ 𝑃 → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃))) |
| 21 | 5, 8, 20 | pm5.21ndd 379 | 1 ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 × cxp 5629 ‘cfv 6499 mPreStcmpst 35433 mStRedcmsr 35434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-mpst 35453 df-msr 35454 |
| This theorem is referenced by: elmthm 35536 |
| Copyright terms: Public domain | W3C validator |