| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4303 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
| 2 | ndmfv 6893 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4296 dom cdm 5638 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: elfvex 6896 elfvmptrab1w 6995 fveqdmss 7050 eldmrexrnb 7064 elunirn2OLD 7227 elmpocl 7630 elovmpt3rab1 7649 mpoxeldm 8190 mpoxopn0yelv 8192 mpoxopxnop0 8194 r1pwss 9737 rankwflemb 9746 r1elwf 9749 rankr1ai 9751 rankdmr1 9754 rankr1ag 9755 rankr1c 9774 r1pwcl 9800 cardne 9918 cardsdomelir 9926 r1wunlim 10690 eluzel2 12798 acsfiel 17615 homarcl2 17997 arwrcl 18006 pleval2i 18295 acsdrscl 18505 acsficl 18506 submgmrcl 18622 gsumws1 18765 cntzrcl 19259 smndlsmidm 19586 eldprd 19936 isunit 20282 isirred 20328 lbsss 20984 lbssp 20986 lbsind 20987 elocv 21577 cssi 21593 linds1 21719 linds2 21720 lindsind 21726 ply1frcl 22205 eltg4i 22847 eltg3 22849 tg1 22851 tg2 22852 cldrcl 22913 neiss2 22988 lmrcl 23118 iscnp2 23126 kqtop 23632 fbasne0 23717 0nelfb 23718 fbsspw 23719 fbasssin 23723 fbun 23727 trfbas2 23730 trfbas 23731 isfil 23734 filss 23740 fbasweak 23752 fgval 23757 elfg 23758 fgcl 23765 isufil 23790 ufilss 23792 trufil 23797 fmval 23830 elfm3 23837 fmfnfmlem4 23844 fmfnfm 23845 metflem 24216 xmetf 24217 xmeteq0 24226 xmettri2 24228 xmetres2 24249 blfvalps 24271 blvalps 24273 blval 24274 blfps 24294 blf 24295 isxms2 24336 tmslem 24370 lmmbr2 25159 lmmbrf 25162 fmcfil 25172 iscau2 25177 iscauf 25180 caucfil 25183 cmetcaulem 25188 iscmet3 25193 cfilresi 25195 caussi 25197 causs 25198 metcld2 25207 cmetss 25216 bcthlem1 25224 bcth3 25231 cpncn 25838 cpnres 25839 madebdayim 27799 oldbdayim 27800 newbdayim 27814 tglngne 28477 wlkdlem3 29612 1wlkdlem3 30068 fpwrelmap 32656 brsiga 34173 measbase 34187 cvmsrcl 35251 snmlval 35318 fneuni 36335 uncf 37593 unccur 37597 caures 37754 ismtyval 37794 isismty 37795 heiborlem10 37814 eldiophb 42745 elmnc 43125 elbigofrcl 48539 cicrcl2 49032 cic1st2nd 49036 eloppf 49122 |
| Copyright terms: Public domain | W3C validator |