![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
Ref | Expression |
---|---|
elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4149 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
2 | ndmfv 6463 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
3 | 1, 2 | nsyl2 145 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ∅c0 4144 dom cdm 5342 ‘cfv 6123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-nul 5013 ax-pow 5065 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-dm 5352 df-iota 6086 df-fv 6131 |
This theorem is referenced by: elfvex 6467 fveqdmss 6603 eldmrexrnb 6615 elmpt2cl 7136 elovmpt3rab1 7153 mpt2xeldm 7602 mpt2xopn0yelv 7604 mpt2xopxnop0 7606 r1pwss 8924 rankwflemb 8933 r1elwf 8936 rankr1ai 8938 rankdmr1 8941 rankr1ag 8942 rankr1c 8961 r1pwcl 8987 cardne 9104 cardsdomelir 9112 r1wunlim 9874 eluzel2 11973 bitsval 15519 acsfiel 16667 subcrcl 16828 homarcl2 17037 arwrcl 17046 pleval2i 17317 acsdrscl 17523 acsficl 17524 submrcl 17699 gsumws1 17729 issubg 17945 isnsg 17974 cntzrcl 18110 eldprd 18757 isunit 19011 isirred 19053 abvrcl 19177 lbsss 19436 lbssp 19438 lbsind 19439 ply1frcl 20043 elocv 20375 cssi 20391 isobs 20427 linds1 20516 linds2 20517 lindsind 20523 eltg4i 21135 eltg3 21137 tg1 21139 tg2 21140 cldrcl 21201 neiss2 21276 lmrcl 21406 iscnp2 21414 islocfin 21691 kgeni 21711 kqtop 21919 fbasne0 22004 0nelfb 22005 fbsspw 22006 fbasssin 22010 fbun 22014 trfbas2 22017 trfbas 22018 isfil 22021 filss 22027 fbasweak 22039 fgval 22044 elfg 22045 fgcl 22052 isufil 22077 ufilss 22079 trufil 22084 fmval 22117 elfm3 22124 fmfnfmlem4 22131 fmfnfm 22132 elrnust 22398 metflem 22503 xmetf 22504 xmeteq0 22513 xmettri2 22515 xmetres2 22536 blfvalps 22558 blvalps 22560 blval 22561 blfps 22581 blf 22582 isxms2 22623 tmslem 22657 metuval 22724 isphtpc 23163 lmmbr2 23427 lmmbrf 23430 cfili 23436 fmcfil 23440 cfilfcls 23442 iscau2 23445 iscauf 23448 caucfil 23451 cmetcaulem 23456 iscmet3 23461 cfilresi 23463 caussi 23465 causs 23466 metcld2 23475 cmetss 23484 bcthlem1 23492 bcth3 23499 cpncn 24098 cpnres 24099 plybss 24349 tglngne 25862 wlkdlem3 26985 1wlkdlem3 27504 elunirn2 29989 fpwrelmap 30045 metidval 30467 pstmval 30472 brsiga 30780 measbase 30794 cvmsrcl 31781 snmlval 31848 fneuni 32869 uncf 33924 unccur 33928 caures 34091 ismtyval 34134 isismty 34135 heiborlem10 34154 eldiophb 38157 elmnc 38542 issdrg 38603 submgmrcl 42622 elbigofrcl 43184 |
Copyright terms: Public domain | W3C validator |