![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
Ref | Expression |
---|---|
elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4334 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
2 | ndmfv 6927 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∅c0 4323 dom cdm 5677 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-dm 5687 df-iota 6496 df-fv 6552 |
This theorem is referenced by: elfvex 6930 elfvmptrab1w 7025 fveqdmss 7081 eldmrexrnb 7094 elunirn2OLD 7252 elmpocl 7648 elovmpt3rab1 7666 mpoxeldm 8196 mpoxopn0yelv 8198 mpoxopxnop0 8200 r1pwss 9779 rankwflemb 9788 r1elwf 9791 rankr1ai 9793 rankdmr1 9796 rankr1ag 9797 rankr1c 9816 r1pwcl 9842 cardne 9960 cardsdomelir 9968 r1wunlim 10732 eluzel2 12827 acsfiel 17598 homarcl2 17985 arwrcl 17994 pleval2i 18289 acsdrscl 18499 acsficl 18500 gsumws1 18719 cntzrcl 19191 smndlsmidm 19524 eldprd 19874 isunit 20187 isirred 20233 lbsss 20688 lbssp 20690 lbsind 20691 elocv 21221 cssi 21237 linds1 21365 linds2 21366 lindsind 21372 ply1frcl 21837 eltg4i 22463 eltg3 22465 tg1 22467 tg2 22468 cldrcl 22530 neiss2 22605 lmrcl 22735 iscnp2 22743 kqtop 23249 fbasne0 23334 0nelfb 23335 fbsspw 23336 fbasssin 23340 fbun 23344 trfbas2 23347 trfbas 23348 isfil 23351 filss 23357 fbasweak 23369 fgval 23374 elfg 23375 fgcl 23382 isufil 23407 ufilss 23409 trufil 23414 fmval 23447 elfm3 23454 fmfnfmlem4 23461 fmfnfm 23462 metflem 23834 xmetf 23835 xmeteq0 23844 xmettri2 23846 xmetres2 23867 blfvalps 23889 blvalps 23891 blval 23892 blfps 23912 blf 23913 isxms2 23954 tmslem 23990 tmslemOLD 23991 lmmbr2 24776 lmmbrf 24779 fmcfil 24789 iscau2 24794 iscauf 24797 caucfil 24800 cmetcaulem 24805 iscmet3 24810 cfilresi 24812 caussi 24814 causs 24815 metcld2 24824 cmetss 24833 bcthlem1 24841 bcth3 24848 cpncn 25453 cpnres 25454 madebdayim 27383 oldbdayim 27384 tglngne 27832 wlkdlem3 28972 1wlkdlem3 29423 fpwrelmap 31989 brsiga 33212 measbase 33226 cvmsrcl 34286 snmlval 34353 fneuni 35280 uncf 36515 unccur 36519 caures 36676 ismtyval 36716 isismty 36717 heiborlem10 36736 eldiophb 41543 elmnc 41926 submgmrcl 46600 elbigofrcl 47284 |
Copyright terms: Public domain | W3C validator |