![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
Ref | Expression |
---|---|
elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4363 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
2 | ndmfv 6955 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∅c0 4352 dom cdm 5700 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: elfvex 6958 elfvmptrab1w 7056 fveqdmss 7112 eldmrexrnb 7126 elunirn2OLD 7290 elmpocl 7691 elovmpt3rab1 7710 mpoxeldm 8252 mpoxopn0yelv 8254 mpoxopxnop0 8256 r1pwss 9853 rankwflemb 9862 r1elwf 9865 rankr1ai 9867 rankdmr1 9870 rankr1ag 9871 rankr1c 9890 r1pwcl 9916 cardne 10034 cardsdomelir 10042 r1wunlim 10806 eluzel2 12908 acsfiel 17712 homarcl2 18102 arwrcl 18111 pleval2i 18406 acsdrscl 18616 acsficl 18617 submgmrcl 18733 gsumws1 18873 cntzrcl 19367 smndlsmidm 19698 eldprd 20048 isunit 20399 isirred 20445 lbsss 21099 lbssp 21101 lbsind 21102 elocv 21709 cssi 21725 linds1 21853 linds2 21854 lindsind 21860 ply1frcl 22343 eltg4i 22988 eltg3 22990 tg1 22992 tg2 22993 cldrcl 23055 neiss2 23130 lmrcl 23260 iscnp2 23268 kqtop 23774 fbasne0 23859 0nelfb 23860 fbsspw 23861 fbasssin 23865 fbun 23869 trfbas2 23872 trfbas 23873 isfil 23876 filss 23882 fbasweak 23894 fgval 23899 elfg 23900 fgcl 23907 isufil 23932 ufilss 23934 trufil 23939 fmval 23972 elfm3 23979 fmfnfmlem4 23986 fmfnfm 23987 metflem 24359 xmetf 24360 xmeteq0 24369 xmettri2 24371 xmetres2 24392 blfvalps 24414 blvalps 24416 blval 24417 blfps 24437 blf 24438 isxms2 24479 tmslem 24515 tmslemOLD 24516 lmmbr2 25312 lmmbrf 25315 fmcfil 25325 iscau2 25330 iscauf 25333 caucfil 25336 cmetcaulem 25341 iscmet3 25346 cfilresi 25348 caussi 25350 causs 25351 metcld2 25360 cmetss 25369 bcthlem1 25377 bcth3 25384 cpncn 25992 cpnres 25993 madebdayim 27944 oldbdayim 27945 tglngne 28576 wlkdlem3 29720 1wlkdlem3 30171 fpwrelmap 32747 brsiga 34147 measbase 34161 cvmsrcl 35232 snmlval 35299 fneuni 36313 uncf 37559 unccur 37563 caures 37720 ismtyval 37760 isismty 37761 heiborlem10 37780 eldiophb 42713 elmnc 43093 elbigofrcl 48284 |
Copyright terms: Public domain | W3C validator |