Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
Ref | Expression |
---|---|
elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4284 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
2 | ndmfv 6864 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∅c0 4273 dom cdm 5624 ‘cfv 6483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-dm 5634 df-iota 6435 df-fv 6491 |
This theorem is referenced by: elfvex 6867 elfvmptrab1w 6961 fveqdmss 7016 eldmrexrnb 7028 elunirn2OLD 7186 elmpocl 7577 elovmpt3rab1 7595 mpoxeldm 8101 mpoxopn0yelv 8103 mpoxopxnop0 8105 r1pwss 9645 rankwflemb 9654 r1elwf 9657 rankr1ai 9659 rankdmr1 9662 rankr1ag 9663 rankr1c 9682 r1pwcl 9708 cardne 9826 cardsdomelir 9834 r1wunlim 10598 eluzel2 12692 acsfiel 17460 homarcl2 17847 arwrcl 17856 pleval2i 18151 acsdrscl 18361 acsficl 18362 gsumws1 18573 cntzrcl 19029 smndlsmidm 19357 eldprd 19701 isunit 19993 isirred 20035 lbsss 20444 lbssp 20446 lbsind 20447 elocv 20978 cssi 20994 linds1 21122 linds2 21123 lindsind 21129 ply1frcl 21589 eltg4i 22215 eltg3 22217 tg1 22219 tg2 22220 cldrcl 22282 neiss2 22357 lmrcl 22487 iscnp2 22495 kqtop 23001 fbasne0 23086 0nelfb 23087 fbsspw 23088 fbasssin 23092 fbun 23096 trfbas2 23099 trfbas 23100 isfil 23103 filss 23109 fbasweak 23121 fgval 23126 elfg 23127 fgcl 23134 isufil 23159 ufilss 23161 trufil 23166 fmval 23199 elfm3 23206 fmfnfmlem4 23213 fmfnfm 23214 metflem 23586 xmetf 23587 xmeteq0 23596 xmettri2 23598 xmetres2 23619 blfvalps 23641 blvalps 23643 blval 23644 blfps 23664 blf 23665 isxms2 23706 tmslem 23742 tmslemOLD 23743 lmmbr2 24528 lmmbrf 24531 fmcfil 24541 iscau2 24546 iscauf 24549 caucfil 24552 cmetcaulem 24557 iscmet3 24562 cfilresi 24564 caussi 24566 causs 24567 metcld2 24576 cmetss 24585 bcthlem1 24593 bcth3 24600 cpncn 25205 cpnres 25206 tglngne 27199 wlkdlem3 28339 1wlkdlem3 28790 fpwrelmap 31353 brsiga 32447 measbase 32461 cvmsrcl 33523 snmlval 33590 madebdayim 34178 oldbdayim 34179 fneuni 34673 uncf 35912 unccur 35916 caures 36074 ismtyval 36114 isismty 36115 heiborlem10 36134 eldiophb 40892 elmnc 41275 submgmrcl 45754 elbigofrcl 46314 |
Copyright terms: Public domain | W3C validator |