![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
Ref | Expression |
---|---|
elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4345 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
2 | ndmfv 6941 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∅c0 4338 dom cdm 5688 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-dm 5698 df-iota 6515 df-fv 6570 |
This theorem is referenced by: elfvex 6944 elfvmptrab1w 7042 fveqdmss 7097 eldmrexrnb 7111 elunirn2OLD 7272 elmpocl 7673 elovmpt3rab1 7692 mpoxeldm 8234 mpoxopn0yelv 8236 mpoxopxnop0 8238 r1pwss 9821 rankwflemb 9830 r1elwf 9833 rankr1ai 9835 rankdmr1 9838 rankr1ag 9839 rankr1c 9858 r1pwcl 9884 cardne 10002 cardsdomelir 10010 r1wunlim 10774 eluzel2 12880 acsfiel 17698 homarcl2 18088 arwrcl 18097 pleval2i 18393 acsdrscl 18603 acsficl 18604 submgmrcl 18720 gsumws1 18863 cntzrcl 19357 smndlsmidm 19688 eldprd 20038 isunit 20389 isirred 20435 lbsss 21093 lbssp 21095 lbsind 21096 elocv 21703 cssi 21719 linds1 21847 linds2 21848 lindsind 21854 ply1frcl 22337 eltg4i 22982 eltg3 22984 tg1 22986 tg2 22987 cldrcl 23049 neiss2 23124 lmrcl 23254 iscnp2 23262 kqtop 23768 fbasne0 23853 0nelfb 23854 fbsspw 23855 fbasssin 23859 fbun 23863 trfbas2 23866 trfbas 23867 isfil 23870 filss 23876 fbasweak 23888 fgval 23893 elfg 23894 fgcl 23901 isufil 23926 ufilss 23928 trufil 23933 fmval 23966 elfm3 23973 fmfnfmlem4 23980 fmfnfm 23981 metflem 24353 xmetf 24354 xmeteq0 24363 xmettri2 24365 xmetres2 24386 blfvalps 24408 blvalps 24410 blval 24411 blfps 24431 blf 24432 isxms2 24473 tmslem 24509 tmslemOLD 24510 lmmbr2 25306 lmmbrf 25309 fmcfil 25319 iscau2 25324 iscauf 25327 caucfil 25330 cmetcaulem 25335 iscmet3 25340 cfilresi 25342 caussi 25344 causs 25345 metcld2 25354 cmetss 25363 bcthlem1 25371 bcth3 25378 cpncn 25986 cpnres 25987 madebdayim 27940 oldbdayim 27941 tglngne 28572 wlkdlem3 29716 1wlkdlem3 30167 fpwrelmap 32750 brsiga 34163 measbase 34177 cvmsrcl 35248 snmlval 35315 fneuni 36329 uncf 37585 unccur 37589 caures 37746 ismtyval 37786 isismty 37787 heiborlem10 37806 eldiophb 42744 elmnc 43124 elbigofrcl 48399 |
Copyright terms: Public domain | W3C validator |