| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4315 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
| 2 | ndmfv 6910 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4308 dom cdm 5654 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6483 df-fv 6538 |
| This theorem is referenced by: elfvex 6913 elfvmptrab1w 7012 fveqdmss 7067 eldmrexrnb 7081 elunirn2OLD 7244 elmpocl 7646 elovmpt3rab1 7665 mpoxeldm 8208 mpoxopn0yelv 8210 mpoxopxnop0 8212 r1pwss 9796 rankwflemb 9805 r1elwf 9808 rankr1ai 9810 rankdmr1 9813 rankr1ag 9814 rankr1c 9833 r1pwcl 9859 cardne 9977 cardsdomelir 9985 r1wunlim 10749 eluzel2 12855 acsfiel 17664 homarcl2 18046 arwrcl 18055 pleval2i 18344 acsdrscl 18554 acsficl 18555 submgmrcl 18671 gsumws1 18814 cntzrcl 19308 smndlsmidm 19635 eldprd 19985 isunit 20331 isirred 20377 lbsss 21033 lbssp 21035 lbsind 21036 elocv 21626 cssi 21642 linds1 21768 linds2 21769 lindsind 21775 ply1frcl 22254 eltg4i 22896 eltg3 22898 tg1 22900 tg2 22901 cldrcl 22962 neiss2 23037 lmrcl 23167 iscnp2 23175 kqtop 23681 fbasne0 23766 0nelfb 23767 fbsspw 23768 fbasssin 23772 fbun 23776 trfbas2 23779 trfbas 23780 isfil 23783 filss 23789 fbasweak 23801 fgval 23806 elfg 23807 fgcl 23814 isufil 23839 ufilss 23841 trufil 23846 fmval 23879 elfm3 23886 fmfnfmlem4 23893 fmfnfm 23894 metflem 24265 xmetf 24266 xmeteq0 24275 xmettri2 24277 xmetres2 24298 blfvalps 24320 blvalps 24322 blval 24323 blfps 24343 blf 24344 isxms2 24385 tmslem 24419 lmmbr2 25209 lmmbrf 25212 fmcfil 25222 iscau2 25227 iscauf 25230 caucfil 25233 cmetcaulem 25238 iscmet3 25243 cfilresi 25245 caussi 25247 causs 25248 metcld2 25257 cmetss 25266 bcthlem1 25274 bcth3 25281 cpncn 25888 cpnres 25889 madebdayim 27843 oldbdayim 27844 tglngne 28475 wlkdlem3 29610 1wlkdlem3 30066 fpwrelmap 32656 brsiga 34160 measbase 34174 cvmsrcl 35232 snmlval 35299 fneuni 36311 uncf 37569 unccur 37573 caures 37730 ismtyval 37770 isismty 37771 heiborlem10 37790 eldiophb 42727 elmnc 43107 elbigofrcl 48478 cicrcl2 48958 cic1st2nd 48962 |
| Copyright terms: Public domain | W3C validator |