Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version |
Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
Ref | Expression |
---|---|
elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4272 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
2 | ndmfv 6798 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∅c0 4261 dom cdm 5588 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-dm 5598 df-iota 6388 df-fv 6438 |
This theorem is referenced by: elfvex 6801 elfvmptrab1w 6895 fveqdmss 6950 eldmrexrnb 6962 elunirn2 7120 elmpocl 7502 elovmpt3rab1 7520 mpoxeldm 8011 mpoxopn0yelv 8013 mpoxopxnop0 8015 r1pwss 9526 rankwflemb 9535 r1elwf 9538 rankr1ai 9540 rankdmr1 9543 rankr1ag 9544 rankr1c 9563 r1pwcl 9589 cardne 9707 cardsdomelir 9715 r1wunlim 10477 eluzel2 12569 acsfiel 17344 homarcl2 17731 arwrcl 17740 pleval2i 18035 acsdrscl 18245 acsficl 18246 gsumws1 18457 cntzrcl 18914 smndlsmidm 19242 eldprd 19588 isunit 19880 isirred 19922 lbsss 20320 lbssp 20322 lbsind 20323 elocv 20854 cssi 20870 linds1 20998 linds2 20999 lindsind 21005 ply1frcl 21465 eltg4i 22091 eltg3 22093 tg1 22095 tg2 22096 cldrcl 22158 neiss2 22233 lmrcl 22363 iscnp2 22371 kqtop 22877 fbasne0 22962 0nelfb 22963 fbsspw 22964 fbasssin 22968 fbun 22972 trfbas2 22975 trfbas 22976 isfil 22979 filss 22985 fbasweak 22997 fgval 23002 elfg 23003 fgcl 23010 isufil 23035 ufilss 23037 trufil 23042 fmval 23075 elfm3 23082 fmfnfmlem4 23089 fmfnfm 23090 elrnust 23357 metflem 23462 xmetf 23463 xmeteq0 23472 xmettri2 23474 xmetres2 23495 blfvalps 23517 blvalps 23519 blval 23520 blfps 23540 blf 23541 isxms2 23582 tmslem 23618 tmslemOLD 23619 metuval 23686 lmmbr2 24404 lmmbrf 24407 fmcfil 24417 iscau2 24422 iscauf 24425 caucfil 24428 cmetcaulem 24433 iscmet3 24438 cfilresi 24440 caussi 24442 causs 24443 metcld2 24452 cmetss 24461 bcthlem1 24469 bcth3 24476 cpncn 25081 cpnres 25082 tglngne 26892 wlkdlem3 28032 1wlkdlem3 28482 fpwrelmap 31047 metidval 31819 pstmval 31824 brsiga 32130 measbase 32144 cvmsrcl 33205 snmlval 33272 madebdayim 34049 oldbdayim 34050 fneuni 34515 uncf 35735 unccur 35739 caures 35897 ismtyval 35937 isismty 35938 heiborlem10 35957 eldiophb 40559 elmnc 40941 submgmrcl 45288 elbigofrcl 45848 |
Copyright terms: Public domain | W3C validator |