| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4299 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
| 2 | ndmfv 6875 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4292 dom cdm 5631 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-dm 5641 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: elfvex 6878 elfvmptrab1w 6977 fveqdmss 7032 eldmrexrnb 7046 elunirn2OLD 7209 elmpocl 7610 elovmpt3rab1 7629 mpoxeldm 8167 mpoxopn0yelv 8169 mpoxopxnop0 8171 r1pwss 9713 rankwflemb 9722 r1elwf 9725 rankr1ai 9727 rankdmr1 9730 rankr1ag 9731 rankr1c 9750 r1pwcl 9776 cardne 9894 cardsdomelir 9902 r1wunlim 10666 eluzel2 12774 acsfiel 17595 homarcl2 17977 arwrcl 17986 pleval2i 18275 acsdrscl 18487 acsficl 18488 submgmrcl 18604 gsumws1 18747 cntzrcl 19241 smndlsmidm 19570 eldprd 19920 isunit 20293 isirred 20339 lbsss 21016 lbssp 21018 lbsind 21019 elocv 21610 cssi 21626 linds1 21752 linds2 21753 lindsind 21759 ply1frcl 22238 eltg4i 22880 eltg3 22882 tg1 22884 tg2 22885 cldrcl 22946 neiss2 23021 lmrcl 23151 iscnp2 23159 kqtop 23665 fbasne0 23750 0nelfb 23751 fbsspw 23752 fbasssin 23756 fbun 23760 trfbas2 23763 trfbas 23764 isfil 23767 filss 23773 fbasweak 23785 fgval 23790 elfg 23791 fgcl 23798 isufil 23823 ufilss 23825 trufil 23830 fmval 23863 elfm3 23870 fmfnfmlem4 23877 fmfnfm 23878 metflem 24249 xmetf 24250 xmeteq0 24259 xmettri2 24261 xmetres2 24282 blfvalps 24304 blvalps 24306 blval 24307 blfps 24327 blf 24328 isxms2 24369 tmslem 24403 lmmbr2 25192 lmmbrf 25195 fmcfil 25205 iscau2 25210 iscauf 25213 caucfil 25216 cmetcaulem 25221 iscmet3 25226 cfilresi 25228 caussi 25230 causs 25231 metcld2 25240 cmetss 25249 bcthlem1 25257 bcth3 25264 cpncn 25871 cpnres 25872 madebdayim 27837 oldbdayim 27838 newbdayim 27852 tglngne 28530 wlkdlem3 29663 1wlkdlem3 30118 fpwrelmap 32706 brsiga 34166 measbase 34180 cvmsrcl 35244 snmlval 35311 fneuni 36328 uncf 37586 unccur 37590 caures 37747 ismtyval 37787 isismty 37788 heiborlem10 37807 eldiophb 42738 elmnc 43118 elbigofrcl 48532 cicrcl2 49025 cic1st2nd 49029 eloppf 49115 |
| Copyright terms: Public domain | W3C validator |