| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4291 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
| 2 | ndmfv 6855 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4284 dom cdm 5619 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-dm 5629 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: elfvex 6858 elfvmptrab1w 6957 fveqdmss 7012 eldmrexrnb 7026 elunirn2OLD 7189 elmpocl 7590 elovmpt3rab1 7609 mpoxeldm 8144 mpoxopn0yelv 8146 mpoxopxnop0 8148 r1pwss 9680 rankwflemb 9689 r1elwf 9692 rankr1ai 9694 rankdmr1 9697 rankr1ag 9698 rankr1c 9717 r1pwcl 9743 cardne 9861 cardsdomelir 9869 r1wunlim 10631 eluzel2 12740 acsfiel 17560 homarcl2 17942 arwrcl 17951 pleval2i 18240 acsdrscl 18452 acsficl 18453 submgmrcl 18569 gsumws1 18712 cntzrcl 19206 smndlsmidm 19535 eldprd 19885 isunit 20258 isirred 20304 lbsss 20981 lbssp 20983 lbsind 20984 elocv 21575 cssi 21591 linds1 21717 linds2 21718 lindsind 21724 ply1frcl 22203 eltg4i 22845 eltg3 22847 tg1 22849 tg2 22850 cldrcl 22911 neiss2 22986 lmrcl 23116 iscnp2 23124 kqtop 23630 fbasne0 23715 0nelfb 23716 fbsspw 23717 fbasssin 23721 fbun 23725 trfbas2 23728 trfbas 23729 isfil 23732 filss 23738 fbasweak 23750 fgval 23755 elfg 23756 fgcl 23763 isufil 23788 ufilss 23790 trufil 23795 fmval 23828 elfm3 23835 fmfnfmlem4 23842 fmfnfm 23843 metflem 24214 xmetf 24215 xmeteq0 24224 xmettri2 24226 xmetres2 24247 blfvalps 24269 blvalps 24271 blval 24272 blfps 24292 blf 24293 isxms2 24334 tmslem 24368 lmmbr2 25157 lmmbrf 25160 fmcfil 25170 iscau2 25175 iscauf 25178 caucfil 25181 cmetcaulem 25186 iscmet3 25191 cfilresi 25193 caussi 25195 causs 25196 metcld2 25205 cmetss 25214 bcthlem1 25222 bcth3 25229 cpncn 25836 cpnres 25837 madebdayim 27802 oldbdayim 27803 newbdayim 27817 tglngne 28495 wlkdlem3 29628 1wlkdlem3 30083 fpwrelmap 32677 brsiga 34156 measbase 34170 cvmsrcl 35247 snmlval 35314 fneuni 36331 uncf 37589 unccur 37593 caures 37750 ismtyval 37790 isismty 37791 heiborlem10 37810 eldiophb 42740 elmnc 43119 elbigofrcl 48545 cicrcl2 49038 cic1st2nd 49042 eloppf 49128 |
| Copyright terms: Public domain | W3C validator |