| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4287 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
| 2 | ndmfv 6854 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4280 dom cdm 5614 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: elfvex 6857 elfvmptrab1w 6956 fveqdmss 7011 eldmrexrnb 7025 elmpocl 7587 elovmpt3rab1 7606 mpoxeldm 8141 mpoxopn0yelv 8143 mpoxopxnop0 8145 r1pwss 9677 rankwflemb 9686 r1elwf 9689 rankr1ai 9691 rankdmr1 9694 rankr1ag 9695 rankr1c 9714 r1pwcl 9740 cardne 9858 cardsdomelir 9866 r1wunlim 10628 eluzel2 12737 acsfiel 17560 homarcl2 17942 arwrcl 17951 pleval2i 18240 acsdrscl 18452 acsficl 18453 submgmrcl 18603 gsumws1 18746 cntzrcl 19239 smndlsmidm 19568 eldprd 19918 isunit 20291 isirred 20337 lbsss 21011 lbssp 21013 lbsind 21014 elocv 21605 cssi 21621 linds1 21747 linds2 21748 lindsind 21754 ply1frcl 22233 eltg4i 22875 eltg3 22877 tg1 22879 tg2 22880 cldrcl 22941 neiss2 23016 lmrcl 23146 iscnp2 23154 kqtop 23660 fbasne0 23745 0nelfb 23746 fbsspw 23747 fbasssin 23751 fbun 23755 trfbas2 23758 trfbas 23759 isfil 23762 filss 23768 fbasweak 23780 fgval 23785 elfg 23786 fgcl 23793 isufil 23818 ufilss 23820 trufil 23825 fmval 23858 elfm3 23865 fmfnfmlem4 23872 fmfnfm 23873 metflem 24243 xmetf 24244 xmeteq0 24253 xmettri2 24255 xmetres2 24276 blfvalps 24298 blvalps 24300 blval 24301 blfps 24321 blf 24322 isxms2 24363 tmslem 24397 lmmbr2 25186 lmmbrf 25189 fmcfil 25199 iscau2 25204 iscauf 25207 caucfil 25210 cmetcaulem 25215 iscmet3 25220 cfilresi 25222 caussi 25224 causs 25225 metcld2 25234 cmetss 25243 bcthlem1 25251 bcth3 25258 cpncn 25865 cpnres 25866 madebdayim 27833 oldbdayim 27834 newbdayim 27848 tglngne 28528 wlkdlem3 29661 1wlkdlem3 30119 fpwrelmap 32716 brsiga 34196 measbase 34210 r1elcl 35109 cvmsrcl 35308 snmlval 35375 fneuni 36391 uncf 37638 unccur 37642 caures 37799 ismtyval 37839 isismty 37840 heiborlem10 37859 eldiophb 42849 elmnc 43228 elbigofrcl 48650 cicrcl2 49143 cic1st2nd 49147 eloppf 49233 |
| Copyright terms: Public domain | W3C validator |