| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvdm | Structured version Visualization version GIF version | ||
| Description: If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| elfvdm | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4306 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ¬ (𝐹‘𝐵) = ∅) | |
| 2 | ndmfv 6896 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 dom cdm 5641 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: elfvex 6899 elfvmptrab1w 6998 fveqdmss 7053 eldmrexrnb 7067 elunirn2OLD 7230 elmpocl 7633 elovmpt3rab1 7652 mpoxeldm 8193 mpoxopn0yelv 8195 mpoxopxnop0 8197 r1pwss 9744 rankwflemb 9753 r1elwf 9756 rankr1ai 9758 rankdmr1 9761 rankr1ag 9762 rankr1c 9781 r1pwcl 9807 cardne 9925 cardsdomelir 9933 r1wunlim 10697 eluzel2 12805 acsfiel 17622 homarcl2 18004 arwrcl 18013 pleval2i 18302 acsdrscl 18512 acsficl 18513 submgmrcl 18629 gsumws1 18772 cntzrcl 19266 smndlsmidm 19593 eldprd 19943 isunit 20289 isirred 20335 lbsss 20991 lbssp 20993 lbsind 20994 elocv 21584 cssi 21600 linds1 21726 linds2 21727 lindsind 21733 ply1frcl 22212 eltg4i 22854 eltg3 22856 tg1 22858 tg2 22859 cldrcl 22920 neiss2 22995 lmrcl 23125 iscnp2 23133 kqtop 23639 fbasne0 23724 0nelfb 23725 fbsspw 23726 fbasssin 23730 fbun 23734 trfbas2 23737 trfbas 23738 isfil 23741 filss 23747 fbasweak 23759 fgval 23764 elfg 23765 fgcl 23772 isufil 23797 ufilss 23799 trufil 23804 fmval 23837 elfm3 23844 fmfnfmlem4 23851 fmfnfm 23852 metflem 24223 xmetf 24224 xmeteq0 24233 xmettri2 24235 xmetres2 24256 blfvalps 24278 blvalps 24280 blval 24281 blfps 24301 blf 24302 isxms2 24343 tmslem 24377 lmmbr2 25166 lmmbrf 25169 fmcfil 25179 iscau2 25184 iscauf 25187 caucfil 25190 cmetcaulem 25195 iscmet3 25200 cfilresi 25202 caussi 25204 causs 25205 metcld2 25214 cmetss 25223 bcthlem1 25231 bcth3 25238 cpncn 25845 cpnres 25846 madebdayim 27806 oldbdayim 27807 newbdayim 27821 tglngne 28484 wlkdlem3 29619 1wlkdlem3 30075 fpwrelmap 32663 brsiga 34180 measbase 34194 cvmsrcl 35258 snmlval 35325 fneuni 36342 uncf 37600 unccur 37604 caures 37761 ismtyval 37801 isismty 37802 heiborlem10 37821 eldiophb 42752 elmnc 43132 elbigofrcl 48543 cicrcl2 49036 cic1st2nd 49040 eloppf 49126 |
| Copyright terms: Public domain | W3C validator |