MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1one2o Structured version   Visualization version   GIF version

Theorem 1one2o 8587
Description: Ordinal one is not ordinal two. Analogous to 1ne2 12365. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
1one2o 1o ≠ 2o

Proof of Theorem 1one2o
StepHypRef Expression
1 1onn 8581 . . 3 1o ∈ ω
2 omsucne 7841 . . 3 (1o ∈ ω → 1o ≠ suc 1o)
31, 2ax-mp 5 . 2 1o ≠ suc 1o
4 df-2o 8412 . 2 2o = suc 1o
53, 4neeqtrri 2998 1 1o ≠ 2o
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wne 2925  suc csuc 6322  ωcom 7822  1oc1o 8404  2oc2o 8405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-om 7823  df-1o 8411  df-2o 8412
This theorem is referenced by:  gonanegoal  35332  satffunlem1lem1  35382  satffunlem2lem1  35384  ex-sategoelelomsuc  35406  ex-sategoelel12  35407
  Copyright terms: Public domain W3C validator