| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1one2o | Structured version Visualization version GIF version | ||
| Description: Ordinal one is not ordinal two. Analogous to 1ne2 12389. (Contributed by AV, 17-Oct-2023.) |
| Ref | Expression |
|---|---|
| 1one2o | ⊢ 1o ≠ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8604 | . . 3 ⊢ 1o ∈ ω | |
| 2 | omsucne 7861 | . . 3 ⊢ (1o ∈ ω → 1o ≠ suc 1o) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 1o ≠ suc 1o |
| 4 | df-2o 8435 | . 2 ⊢ 2o = suc 1o | |
| 5 | 3, 4 | neeqtrri 2998 | 1 ⊢ 1o ≠ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 suc csuc 6334 ωcom 7842 1oc1o 8427 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 df-1o 8434 df-2o 8435 |
| This theorem is referenced by: gonanegoal 35339 satffunlem1lem1 35389 satffunlem2lem1 35391 ex-sategoelelomsuc 35413 ex-sategoelel12 35414 |
| Copyright terms: Public domain | W3C validator |