MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1one2o Structured version   Visualization version   GIF version

Theorem 1one2o 8652
Description: Ordinal one is not ordinal two. Analogous to 1ne2 12440. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
1one2o 1o ≠ 2o

Proof of Theorem 1one2o
StepHypRef Expression
1 1onn 8646 . . 3 1o ∈ ω
2 omsucne 7874 . . 3 (1o ∈ ω → 1o ≠ suc 1o)
31, 2ax-mp 5 . 2 1o ≠ suc 1o
4 df-2o 8475 . 2 2o = suc 1o
53, 4neeqtrri 3004 1 1o ≠ 2o
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wne 2931  suc csuc 6351  ωcom 7855  1oc1o 8467  2oc2o 8468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-tr 5227  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-om 7856  df-1o 8474  df-2o 8475
This theorem is referenced by:  gonanegoal  35295  satffunlem1lem1  35345  satffunlem2lem1  35347  ex-sategoelelomsuc  35369  ex-sategoelel12  35370
  Copyright terms: Public domain W3C validator