Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1one2o | Structured version Visualization version GIF version |
Description: Ordinal one is not ordinal two. Analogous to 1ne2 12111. (Contributed by AV, 17-Oct-2023.) |
Ref | Expression |
---|---|
1one2o | ⊢ 1o ≠ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8432 | . . 3 ⊢ 1o ∈ ω | |
2 | omsucne 7706 | . . 3 ⊢ (1o ∈ ω → 1o ≠ suc 1o) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 1o ≠ suc 1o |
4 | df-2o 8268 | . 2 ⊢ 2o = suc 1o | |
5 | 3, 4 | neeqtrri 3016 | 1 ⊢ 1o ≠ 2o |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2942 suc csuc 6253 ωcom 7687 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 df-1o 8267 df-2o 8268 |
This theorem is referenced by: gonanegoal 33214 satffunlem1lem1 33264 satffunlem2lem1 33266 ex-sategoelelomsuc 33288 ex-sategoelel12 33289 |
Copyright terms: Public domain | W3C validator |