![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsbhcdifOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of slotsbhcdif 17390 as of 28-Oct-2024. The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
slotsbhcdifOLD | ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 17175 | . . . 4 ⊢ Base = Slot 1 | |
2 | 1nn 12248 | . . . 4 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 17159 | . . 3 ⊢ (Base‘ndx) = 1 |
4 | 1re 11239 | . . . . 5 ⊢ 1 ∈ ℝ | |
5 | 4nn0 12516 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
6 | 1nn0 12513 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12841 | . . . . . 6 ⊢ 1 < ;10 | |
8 | 2, 5, 6, 7 | declti 12740 | . . . . 5 ⊢ 1 < ;14 |
9 | 4, 8 | ltneii 11352 | . . . 4 ⊢ 1 ≠ ;14 |
10 | homndx 17386 | . . . 4 ⊢ (Hom ‘ndx) = ;14 | |
11 | 9, 10 | neeqtrri 3004 | . . 3 ⊢ 1 ≠ (Hom ‘ndx) |
12 | 3, 11 | eqnetri 3001 | . 2 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
13 | 5nn0 12517 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
14 | 2, 13, 6, 7 | declti 12740 | . . . . 5 ⊢ 1 < ;15 |
15 | 4, 14 | ltneii 11352 | . . . 4 ⊢ 1 ≠ ;15 |
16 | ccondx 17388 | . . . 4 ⊢ (comp‘ndx) = ;15 | |
17 | 15, 16 | neeqtrri 3004 | . . 3 ⊢ 1 ≠ (comp‘ndx) |
18 | 3, 17 | eqnetri 3001 | . 2 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
19 | 6, 5 | deccl 12717 | . . . . . 6 ⊢ ;14 ∈ ℕ0 |
20 | 19 | nn0rei 12508 | . . . . 5 ⊢ ;14 ∈ ℝ |
21 | 5nn 12323 | . . . . . 6 ⊢ 5 ∈ ℕ | |
22 | 4lt5 12414 | . . . . . 6 ⊢ 4 < 5 | |
23 | 6, 5, 21, 22 | declt 12730 | . . . . 5 ⊢ ;14 < ;15 |
24 | 20, 23 | ltneii 11352 | . . . 4 ⊢ ;14 ≠ ;15 |
25 | 24, 16 | neeqtrri 3004 | . . 3 ⊢ ;14 ≠ (comp‘ndx) |
26 | 10, 25 | eqnetri 3001 | . 2 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
27 | 12, 18, 26 | 3pm3.2i 1336 | 1 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 ≠ wne 2930 ‘cfv 6543 1c1 11134 4c4 12294 5c5 12295 ;cdc 12702 ndxcnx 17156 Basecbs 17174 Hom chom 17238 compcco 17239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-slot 17145 df-ndx 17157 df-base 17175 df-hom 17251 df-cco 17252 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |