![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resvlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of resvlem 33322 as of 31-Oct-2024. Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
resvlemOLD.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
resvlemOLD.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resvlemOLD.f | ⊢ 𝐸 = Slot 𝑁 |
resvlemOLD.n | ⊢ 𝑁 ∈ ℕ |
resvlemOLD.b | ⊢ 𝑁 ≠ 5 |
Ref | Expression |
---|---|
resvlemOLD | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvlemOLD.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resvlemOLD.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
3 | eqid 2740 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2740 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
5 | 2, 3, 4 | resvid2 33319 | . . . . . 6 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
6 | 5 | fveq2d 6924 | . . . . 5 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
7 | 6 | 3expib 1122 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
8 | 2, 3, 4 | resvval2 33320 | . . . . . . 7 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
9 | 8 | fveq2d 6924 | . . . . . 6 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉))) |
10 | resvlemOLD.f | . . . . . . . 8 ⊢ 𝐸 = Slot 𝑁 | |
11 | resvlemOLD.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
12 | 10, 11 | ndxid 17244 | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) |
13 | 10, 11 | ndxarg 17243 | . . . . . . . . 9 ⊢ (𝐸‘ndx) = 𝑁 |
14 | resvlemOLD.b | . . . . . . . . 9 ⊢ 𝑁 ≠ 5 | |
15 | 13, 14 | eqnetri 3017 | . . . . . . . 8 ⊢ (𝐸‘ndx) ≠ 5 |
16 | scandx 17373 | . . . . . . . 8 ⊢ (Scalar‘ndx) = 5 | |
17 | 15, 16 | neeqtrri 3020 | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
18 | 12, 17 | setsnid 17256 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
19 | 9, 18 | eqtr4di 2798 | . . . . 5 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
20 | 19 | 3expib 1122 | . . . 4 ⊢ (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
21 | 7, 20 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
22 | reldmresv 33317 | . . . . . . . . 9 ⊢ Rel dom ↾v | |
23 | 22 | ovprc1 7487 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾v 𝐴) = ∅) |
24 | 2, 23 | eqtrid 2792 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → 𝑅 = ∅) |
25 | 24 | fveq2d 6924 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘∅)) |
26 | 10 | str0 17236 | . . . . . 6 ⊢ ∅ = (𝐸‘∅) |
27 | 25, 26 | eqtr4di 2798 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = ∅) |
28 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
29 | 27, 28 | eqtr4d 2783 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
30 | 29 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
31 | 21, 30 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
32 | 1, 31 | eqtr4id 2799 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 ℕcn 12293 5c5 12351 sSet csts 17210 Slot cslot 17228 ndxcnx 17240 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 ↾v cresv 33315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-sets 17211 df-slot 17229 df-ndx 17241 df-sca 17327 df-resv 33316 |
This theorem is referenced by: resvbasOLD 33325 resvplusgOLD 33327 resvvscaOLD 33329 resvmulrOLD 33331 |
Copyright terms: Public domain | W3C validator |