| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resvlemOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of resvlem 33357 as of 31-Oct-2024. Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| resvlemOLD.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
| resvlemOLD.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resvlemOLD.f | ⊢ 𝐸 = Slot 𝑁 |
| resvlemOLD.n | ⊢ 𝑁 ∈ ℕ |
| resvlemOLD.b | ⊢ 𝑁 ≠ 5 |
| Ref | Expression |
|---|---|
| resvlemOLD | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvlemOLD.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resvlemOLD.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
| 3 | eqid 2737 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2737 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 5 | 2, 3, 4 | resvid2 33354 | . . . . . 6 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 6 | 5 | fveq2d 6910 | . . . . 5 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 7 | 6 | 3expib 1123 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 8 | 2, 3, 4 | resvval2 33355 | . . . . . . 7 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
| 9 | 8 | fveq2d 6910 | . . . . . 6 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉))) |
| 10 | resvlemOLD.f | . . . . . . . 8 ⊢ 𝐸 = Slot 𝑁 | |
| 11 | resvlemOLD.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
| 12 | 10, 11 | ndxid 17234 | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 13 | 10, 11 | ndxarg 17233 | . . . . . . . . 9 ⊢ (𝐸‘ndx) = 𝑁 |
| 14 | resvlemOLD.b | . . . . . . . . 9 ⊢ 𝑁 ≠ 5 | |
| 15 | 13, 14 | eqnetri 3011 | . . . . . . . 8 ⊢ (𝐸‘ndx) ≠ 5 |
| 16 | scandx 17358 | . . . . . . . 8 ⊢ (Scalar‘ndx) = 5 | |
| 17 | 15, 16 | neeqtrri 3014 | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
| 18 | 12, 17 | setsnid 17245 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
| 19 | 9, 18 | eqtr4di 2795 | . . . . 5 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 20 | 19 | 3expib 1123 | . . . 4 ⊢ (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 21 | 7, 20 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 22 | reldmresv 33352 | . . . . . . . . 9 ⊢ Rel dom ↾v | |
| 23 | 22 | ovprc1 7470 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾v 𝐴) = ∅) |
| 24 | 2, 23 | eqtrid 2789 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → 𝑅 = ∅) |
| 25 | 24 | fveq2d 6910 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘∅)) |
| 26 | 10 | str0 17226 | . . . . . 6 ⊢ ∅ = (𝐸‘∅) |
| 27 | 25, 26 | eqtr4di 2795 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = ∅) |
| 28 | fvprc 6898 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
| 29 | 27, 28 | eqtr4d 2780 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 30 | 29 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 31 | 21, 30 | pm2.61ian 812 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 32 | 1, 31 | eqtr4id 2796 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ⊆ wss 3951 ∅c0 4333 〈cop 4632 ‘cfv 6561 (class class class)co 7431 ℕcn 12266 5c5 12324 sSet csts 17200 Slot cslot 17218 ndxcnx 17230 Basecbs 17247 ↾s cress 17274 Scalarcsca 17300 ↾v cresv 33350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-sets 17201 df-slot 17219 df-ndx 17231 df-sca 17313 df-resv 33351 |
| This theorem is referenced by: resvbasOLD 33360 resvplusgOLD 33362 resvvscaOLD 33364 resvmulrOLD 33366 |
| Copyright terms: Public domain | W3C validator |