Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resvlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of resvlem 31407 as of 31-Oct-2024. Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
resvlemOLD.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
resvlemOLD.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resvlemOLD.f | ⊢ 𝐸 = Slot 𝑁 |
resvlemOLD.n | ⊢ 𝑁 ∈ ℕ |
resvlemOLD.b | ⊢ 𝑁 ≠ 5 |
Ref | Expression |
---|---|
resvlemOLD | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvlemOLD.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resvlemOLD.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
3 | eqid 2739 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2739 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
5 | 2, 3, 4 | resvid2 31404 | . . . . . 6 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
6 | 5 | fveq2d 6757 | . . . . 5 ⊢ (((Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
7 | 6 | 3expib 1124 | . . . 4 ⊢ ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
8 | 2, 3, 4 | resvval2 31405 | . . . . . . 7 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
9 | 8 | fveq2d 6757 | . . . . . 6 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉))) |
10 | resvlemOLD.f | . . . . . . . 8 ⊢ 𝐸 = Slot 𝑁 | |
11 | resvlemOLD.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
12 | 10, 11 | ndxid 16801 | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) |
13 | 10, 11 | ndxarg 16800 | . . . . . . . . 9 ⊢ (𝐸‘ndx) = 𝑁 |
14 | resvlemOLD.b | . . . . . . . . 9 ⊢ 𝑁 ≠ 5 | |
15 | 13, 14 | eqnetri 3014 | . . . . . . . 8 ⊢ (𝐸‘ndx) ≠ 5 |
16 | scandx 16925 | . . . . . . . 8 ⊢ (Scalar‘ndx) = 5 | |
17 | 15, 16 | neeqtrri 3017 | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
18 | 12, 17 | setsnid 16813 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)〉)) |
19 | 9, 18 | eqtr4di 2798 | . . . . 5 ⊢ ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
20 | 19 | 3expib 1124 | . . . 4 ⊢ (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
21 | 7, 20 | pm2.61i 185 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
22 | reldmresv 31402 | . . . . . . . . 9 ⊢ Rel dom ↾v | |
23 | 22 | ovprc1 7291 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾v 𝐴) = ∅) |
24 | 2, 23 | syl5eq 2792 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → 𝑅 = ∅) |
25 | 24 | fveq2d 6757 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘∅)) |
26 | 10 | str0 16793 | . . . . . 6 ⊢ ∅ = (𝐸‘∅) |
27 | 25, 26 | eqtr4di 2798 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = ∅) |
28 | fvprc 6745 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
29 | 27, 28 | eqtr4d 2782 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
30 | 29 | adantr 484 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
31 | 21, 30 | pm2.61ian 812 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
32 | 1, 31 | eqtr4id 2799 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 Vcvv 3423 ⊆ wss 3884 ∅c0 4254 〈cop 4564 ‘cfv 6415 (class class class)co 7252 ℕcn 11878 5c5 11936 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 Basecbs 16815 ↾s cress 16842 Scalarcsca 16866 ↾v cresv 31400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-1cn 10835 ax-addcl 10837 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-sets 16768 df-slot 16786 df-ndx 16798 df-sca 16879 df-resv 31401 |
This theorem is referenced by: resvbasOLD 31410 resvplusgOLD 31412 resvvscaOLD 31414 resvmulrOLD 31416 |
Copyright terms: Public domain | W3C validator |