MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvscaOLD Structured version   Visualization version   GIF version

Theorem matvscaOLD 21555
Description: Obsolete proof of matvsca 21554 as of 12-Nov-2024. The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
matbas.a 𝐴 = (𝑁 Mat 𝑅)
matbas.g 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
Assertion
Ref Expression
matvscaOLD ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ( ·𝑠𝐺) = ( ·𝑠𝐴))

Proof of Theorem matvscaOLD
StepHypRef Expression
1 vscaid 17020 . . 3 ·𝑠 = Slot ( ·𝑠 ‘ndx)
2 vscandx 17019 . . . 4 ( ·𝑠 ‘ndx) = 6
3 3re 12045 . . . . . 6 3 ∈ ℝ
4 3lt6 12148 . . . . . 6 3 < 6
53, 4gtneii 11079 . . . . 5 6 ≠ 3
6 mulrndx 16993 . . . . 5 (.r‘ndx) = 3
75, 6neeqtrri 3019 . . . 4 6 ≠ (.r‘ndx)
82, 7eqnetri 3016 . . 3 ( ·𝑠 ‘ndx) ≠ (.r‘ndx)
91, 8setsnid 16900 . 2 ( ·𝑠𝐺) = ( ·𝑠 ‘(𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩))
10 matbas.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
11 matbas.g . . . 4 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
12 eqid 2740 . . . 4 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
1310, 11, 12matval 21548 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩))
1413fveq2d 6773 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ( ·𝑠𝐴) = ( ·𝑠 ‘(𝐺 sSet ⟨(.r‘ndx), (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)⟩)))
159, 14eqtr4id 2799 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ( ·𝑠𝐺) = ( ·𝑠𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  cop 4573  cotp 4575   × cxp 5587  cfv 6431  (class class class)co 7269  Fincfn 8708  3c3 12021  6c6 12024   sSet csts 16854  ndxcnx 16884  .rcmulr 16953   ·𝑠 cvsca 16956   freeLMod cfrlm 20943   maMul cmmul 21522   Mat cmat 21544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-sets 16855  df-slot 16873  df-ndx 16885  df-mulr 16966  df-vsca 16969  df-mat 21545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator