Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matvscaOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of matvsca 21554 as of 12-Nov-2024. The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
matbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matbas.g | ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) |
Ref | Expression |
---|---|
matvscaOLD | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vscaid 17020 | . . 3 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
2 | vscandx 17019 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
3 | 3re 12045 | . . . . . 6 ⊢ 3 ∈ ℝ | |
4 | 3lt6 12148 | . . . . . 6 ⊢ 3 < 6 | |
5 | 3, 4 | gtneii 11079 | . . . . 5 ⊢ 6 ≠ 3 |
6 | mulrndx 16993 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
7 | 5, 6 | neeqtrri 3019 | . . . 4 ⊢ 6 ≠ (.r‘ndx) |
8 | 2, 7 | eqnetri 3016 | . . 3 ⊢ ( ·𝑠 ‘ndx) ≠ (.r‘ndx) |
9 | 1, 8 | setsnid 16900 | . 2 ⊢ ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘(𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉)) |
10 | matbas.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
11 | matbas.g | . . . 4 ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) | |
12 | eqid 2740 | . . . 4 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
13 | 10, 11, 12 | matval 21548 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉)) |
14 | 13 | fveq2d 6773 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘(𝐺 sSet 〈(.r‘ndx), (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)〉))) |
15 | 9, 14 | eqtr4id 2799 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 〈cop 4573 〈cotp 4575 × cxp 5587 ‘cfv 6431 (class class class)co 7269 Fincfn 8708 3c3 12021 6c6 12024 sSet csts 16854 ndxcnx 16884 .rcmulr 16953 ·𝑠 cvsca 16956 freeLMod cfrlm 20943 maMul cmmul 21522 Mat cmat 21544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-ot 4576 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-sets 16855 df-slot 16873 df-ndx 16885 df-mulr 16966 df-vsca 16969 df-mat 21545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |