![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringbasedOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mnringnmulrd 43711 as of 1-Nov-2024. The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mnringbased.1 | β’ πΉ = (π MndRing π) |
mnringbased.2 | β’ π΄ = (Baseβπ) |
mnringbased.3 | β’ π = (π freeLMod π΄) |
mnringbased.4 | β’ π΅ = (Baseβπ) |
mnringbased.5 | β’ (π β π β π) |
mnringbased.6 | β’ (π β π β π) |
Ref | Expression |
---|---|
mnringbasedOLD | β’ (π β π΅ = (BaseβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringbased.4 | . 2 β’ π΅ = (Baseβπ) | |
2 | mnringbased.1 | . . 3 β’ πΉ = (π MndRing π) | |
3 | df-base 17180 | . . 3 β’ Base = Slot 1 | |
4 | 1nn 12253 | . . 3 β’ 1 β β | |
5 | 1re 11244 | . . . . 5 β’ 1 β β | |
6 | 1lt3 12415 | . . . . 5 β’ 1 < 3 | |
7 | 5, 6 | ltneii 11357 | . . . 4 β’ 1 β 3 |
8 | mulrndx 17273 | . . . 4 β’ (.rβndx) = 3 | |
9 | 7, 8 | neeqtrri 3004 | . . 3 β’ 1 β (.rβndx) |
10 | mnringbased.2 | . . 3 β’ π΄ = (Baseβπ) | |
11 | mnringbased.3 | . . 3 β’ π = (π freeLMod π΄) | |
12 | mnringbased.5 | . . 3 β’ (π β π β π) | |
13 | mnringbased.6 | . . 3 β’ (π β π β π) | |
14 | 2, 3, 4, 9, 10, 11, 12, 13 | mnringnmulrdOLD 43712 | . 2 β’ (π β (Baseβπ) = (BaseβπΉ)) |
15 | 1, 14 | eqtrid 2777 | 1 β’ (π β π΅ = (BaseβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6547 (class class class)co 7417 1c1 11139 3c3 12298 ndxcnx 17161 Basecbs 17179 .rcmulr 17233 freeLMod cfrlm 21684 MndRing cmnring 43708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-mulr 17246 df-mnring 43709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |