![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of zlmlem 21286 as of 3-Nov-2024. Lemma for zlmbas 21288 and zlmplusg 21290. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
zlmlemOLD.3 | ⊢ 𝑁 ∈ ℕ |
zlmlemOLD.4 | ⊢ 𝑁 < 5 |
Ref | Expression |
---|---|
zlmlemOLD | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
2 | zlmlemOLD.3 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 17135 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 17134 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝑁 |
5 | 2 | nnrei 12226 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
6 | 4, 5 | eqeltri 2828 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | zlmlemOLD.4 | . . . . . . . 8 ⊢ 𝑁 < 5 | |
8 | 4, 7 | eqbrtri 5169 | . . . . . . 7 ⊢ (𝐸‘ndx) < 5 |
9 | 6, 8 | ltneii 11332 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 5 |
10 | scandx 17264 | . . . . . 6 ⊢ (Scalar‘ndx) = 5 | |
11 | 9, 10 | neeqtrri 3013 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
12 | 3, 11 | setsnid 17147 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) |
13 | 5lt6 12398 | . . . . . . . 8 ⊢ 5 < 6 | |
14 | 5re 12304 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
15 | 6re 12307 | . . . . . . . . 9 ⊢ 6 ∈ ℝ | |
16 | 6, 14, 15 | lttri 11345 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 5 ∧ 5 < 6) → (𝐸‘ndx) < 6) |
17 | 8, 13, 16 | mp2an 689 | . . . . . . 7 ⊢ (𝐸‘ndx) < 6 |
18 | 6, 17 | ltneii 11332 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 6 |
19 | vscandx 17269 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) = 6 | |
20 | 18, 19 | neeqtrri 3013 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
21 | 3, 20 | setsnid 17147 | . . . 4 ⊢ (𝐸‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
22 | 12, 21 | eqtri 2759 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
23 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
24 | eqid 2731 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
25 | 23, 24 | zlmval 21285 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
26 | 25 | fveq2d 6895 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩))) |
27 | 22, 26 | eqtr4id 2790 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
28 | 1 | str0 17127 | . . 3 ⊢ ∅ = (𝐸‘∅) |
29 | fvprc 6883 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
30 | fvprc 6883 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
31 | 23, 30 | eqtrid 2783 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
32 | 31 | fveq2d 6895 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘∅)) |
33 | 28, 29, 32 | 3eqtr4a 2797 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
34 | 27, 33 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 ⟨cop 4634 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℝcr 11113 < clt 11253 ℕcn 12217 5c5 12275 6c6 12276 sSet csts 17101 Slot cslot 17119 ndxcnx 17131 Scalarcsca 17205 ·𝑠 cvsca 17206 .gcmg 18987 ℤringczring 21218 ℤModczlm 21270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-sets 17102 df-slot 17120 df-ndx 17132 df-sca 17218 df-vsca 17219 df-zlm 21274 |
This theorem is referenced by: zlmbasOLD 21289 zlmplusgOLD 21291 zlmmulrOLD 21293 |
Copyright terms: Public domain | W3C validator |