![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of zlmlem 21545 as of 3-Nov-2024. Lemma for zlmbas 21547 and zlmplusg 21549. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
zlmlemOLD.3 | ⊢ 𝑁 ∈ ℕ |
zlmlemOLD.4 | ⊢ 𝑁 < 5 |
Ref | Expression |
---|---|
zlmlemOLD | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
2 | zlmlemOLD.3 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 17231 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 17230 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝑁 |
5 | 2 | nnrei 12273 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
6 | 4, 5 | eqeltri 2835 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | zlmlemOLD.4 | . . . . . . . 8 ⊢ 𝑁 < 5 | |
8 | 4, 7 | eqbrtri 5169 | . . . . . . 7 ⊢ (𝐸‘ndx) < 5 |
9 | 6, 8 | ltneii 11372 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 5 |
10 | scandx 17360 | . . . . . 6 ⊢ (Scalar‘ndx) = 5 | |
11 | 9, 10 | neeqtrri 3012 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
12 | 3, 11 | setsnid 17243 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
13 | 5lt6 12445 | . . . . . . . 8 ⊢ 5 < 6 | |
14 | 5re 12351 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
15 | 6re 12354 | . . . . . . . . 9 ⊢ 6 ∈ ℝ | |
16 | 6, 14, 15 | lttri 11385 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 5 ∧ 5 < 6) → (𝐸‘ndx) < 6) |
17 | 8, 13, 16 | mp2an 692 | . . . . . . 7 ⊢ (𝐸‘ndx) < 6 |
18 | 6, 17 | ltneii 11372 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 6 |
19 | vscandx 17365 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) = 6 | |
20 | 18, 19 | neeqtrri 3012 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
21 | 3, 20 | setsnid 17243 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
22 | 12, 21 | eqtri 2763 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
23 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
24 | eqid 2735 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
25 | 23, 24 | zlmval 21544 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
26 | 25 | fveq2d 6911 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
27 | 22, 26 | eqtr4id 2794 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
28 | 1 | str0 17223 | . . 3 ⊢ ∅ = (𝐸‘∅) |
29 | fvprc 6899 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
30 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
31 | 23, 30 | eqtrid 2787 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
32 | 31 | fveq2d 6911 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘∅)) |
33 | 28, 29, 32 | 3eqtr4a 2801 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
34 | 27, 33 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 〈cop 4637 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 < clt 11293 ℕcn 12264 5c5 12322 6c6 12323 sSet csts 17197 Slot cslot 17215 ndxcnx 17227 Scalarcsca 17301 ·𝑠 cvsca 17302 .gcmg 19098 ℤringczring 21475 ℤModczlm 21529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-sets 17198 df-slot 17216 df-ndx 17228 df-sca 17314 df-vsca 17315 df-zlm 21533 |
This theorem is referenced by: zlmbasOLD 21548 zlmplusgOLD 21550 zlmmulrOLD 21552 |
Copyright terms: Public domain | W3C validator |