Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zlmlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of zlmlem 20718 as of 3-Nov-2024. Lemma for zlmbas 20720 and zlmplusg 20722. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
zlmlemOLD.3 | ⊢ 𝑁 ∈ ℕ |
zlmlemOLD.4 | ⊢ 𝑁 < 5 |
Ref | Expression |
---|---|
zlmlemOLD | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
2 | zlmlemOLD.3 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16898 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 16897 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝑁 |
5 | 2 | nnrei 11982 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
6 | 4, 5 | eqeltri 2835 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | zlmlemOLD.4 | . . . . . . . 8 ⊢ 𝑁 < 5 | |
8 | 4, 7 | eqbrtri 5095 | . . . . . . 7 ⊢ (𝐸‘ndx) < 5 |
9 | 6, 8 | ltneii 11088 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 5 |
10 | scandx 17024 | . . . . . 6 ⊢ (Scalar‘ndx) = 5 | |
11 | 9, 10 | neeqtrri 3017 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
12 | 3, 11 | setsnid 16910 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
13 | 5lt6 12154 | . . . . . . . 8 ⊢ 5 < 6 | |
14 | 5re 12060 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
15 | 6re 12063 | . . . . . . . . 9 ⊢ 6 ∈ ℝ | |
16 | 6, 14, 15 | lttri 11101 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 5 ∧ 5 < 6) → (𝐸‘ndx) < 6) |
17 | 8, 13, 16 | mp2an 689 | . . . . . . 7 ⊢ (𝐸‘ndx) < 6 |
18 | 6, 17 | ltneii 11088 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 6 |
19 | vscandx 17029 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) = 6 | |
20 | 18, 19 | neeqtrri 3017 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
21 | 3, 20 | setsnid 16910 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
22 | 12, 21 | eqtri 2766 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
23 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
24 | eqid 2738 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
25 | 23, 24 | zlmval 20717 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
26 | 25 | fveq2d 6778 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
27 | 22, 26 | eqtr4id 2797 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
28 | 1 | str0 16890 | . . 3 ⊢ ∅ = (𝐸‘∅) |
29 | fvprc 6766 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
30 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
31 | 23, 30 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
32 | 31 | fveq2d 6778 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘∅)) |
33 | 28, 29, 32 | 3eqtr4a 2804 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
34 | 27, 33 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 〈cop 4567 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 < clt 11009 ℕcn 11973 5c5 12031 6c6 12032 sSet csts 16864 Slot cslot 16882 ndxcnx 16894 Scalarcsca 16965 ·𝑠 cvsca 16966 .gcmg 18700 ℤringczring 20670 ℤModczlm 20702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-sets 16865 df-slot 16883 df-ndx 16895 df-sca 16978 df-vsca 16979 df-zlm 20706 |
This theorem is referenced by: zlmbasOLD 20721 zlmplusgOLD 20723 zlmmulrOLD 20725 |
Copyright terms: Public domain | W3C validator |