Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zlmlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of zlmlem 20605 as of 3-Nov-2024. Lemma for zlmbas 20607 and zlmplusg 20609. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
zlmlemOLD.3 | ⊢ 𝑁 ∈ ℕ |
zlmlemOLD.4 | ⊢ 𝑁 < 5 |
Ref | Expression |
---|---|
zlmlemOLD | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
2 | zlmlemOLD.3 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16801 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 16800 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝑁 |
5 | 2 | nnrei 11887 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
6 | 4, 5 | eqeltri 2836 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | zlmlemOLD.4 | . . . . . . . 8 ⊢ 𝑁 < 5 | |
8 | 4, 7 | eqbrtri 5091 | . . . . . . 7 ⊢ (𝐸‘ndx) < 5 |
9 | 6, 8 | ltneii 10993 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 5 |
10 | scandx 16925 | . . . . . 6 ⊢ (Scalar‘ndx) = 5 | |
11 | 9, 10 | neeqtrri 3017 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
12 | 3, 11 | setsnid 16813 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
13 | 5lt6 12059 | . . . . . . . 8 ⊢ 5 < 6 | |
14 | 5re 11965 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
15 | 6re 11968 | . . . . . . . . 9 ⊢ 6 ∈ ℝ | |
16 | 6, 14, 15 | lttri 11006 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 5 ∧ 5 < 6) → (𝐸‘ndx) < 6) |
17 | 8, 13, 16 | mp2an 692 | . . . . . . 7 ⊢ (𝐸‘ndx) < 6 |
18 | 6, 17 | ltneii 10993 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 6 |
19 | vscandx 16930 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) = 6 | |
20 | 18, 19 | neeqtrri 3017 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
21 | 3, 20 | setsnid 16813 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
22 | 12, 21 | eqtri 2767 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
23 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
24 | eqid 2739 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
25 | 23, 24 | zlmval 20604 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
26 | 25 | fveq2d 6757 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
27 | 22, 26 | eqtr4id 2799 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
28 | 1 | str0 16793 | . . 3 ⊢ ∅ = (𝐸‘∅) |
29 | fvprc 6745 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
30 | fvprc 6745 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
31 | 23, 30 | eqtrid 2791 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
32 | 31 | fveq2d 6757 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘∅)) |
33 | 28, 29, 32 | 3eqtr4a 2806 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
34 | 27, 33 | pm2.61i 185 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∅c0 4254 〈cop 4564 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 ℝcr 10776 < clt 10915 ℕcn 11878 5c5 11936 6c6 11937 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 Scalarcsca 16866 ·𝑠 cvsca 16867 .gcmg 18590 ℤringzring 20557 ℤModczlm 20589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-sets 16768 df-slot 16786 df-ndx 16798 df-sca 16879 df-vsca 16880 df-zlm 20593 |
This theorem is referenced by: zlmbasOLD 20608 zlmplusgOLD 20610 zlmmulrOLD 20612 |
Copyright terms: Public domain | W3C validator |