Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zlmlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of zlmlem 20824 as of 3-Nov-2024. Lemma for zlmbas 20826 and zlmplusg 20828. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
zlmlemOLD.3 | ⊢ 𝑁 ∈ ℕ |
zlmlemOLD.4 | ⊢ 𝑁 < 5 |
Ref | Expression |
---|---|
zlmlemOLD | ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
2 | zlmlemOLD.3 | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16995 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 16994 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝑁 |
5 | 2 | nnrei 12083 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
6 | 4, 5 | eqeltri 2833 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | zlmlemOLD.4 | . . . . . . . 8 ⊢ 𝑁 < 5 | |
8 | 4, 7 | eqbrtri 5113 | . . . . . . 7 ⊢ (𝐸‘ndx) < 5 |
9 | 6, 8 | ltneii 11189 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 5 |
10 | scandx 17121 | . . . . . 6 ⊢ (Scalar‘ndx) = 5 | |
11 | 9, 10 | neeqtrri 3014 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
12 | 3, 11 | setsnid 17007 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
13 | 5lt6 12255 | . . . . . . . 8 ⊢ 5 < 6 | |
14 | 5re 12161 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
15 | 6re 12164 | . . . . . . . . 9 ⊢ 6 ∈ ℝ | |
16 | 6, 14, 15 | lttri 11202 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 5 ∧ 5 < 6) → (𝐸‘ndx) < 6) |
17 | 8, 13, 16 | mp2an 689 | . . . . . . 7 ⊢ (𝐸‘ndx) < 6 |
18 | 6, 17 | ltneii 11189 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 6 |
19 | vscandx 17126 | . . . . . 6 ⊢ ( ·𝑠 ‘ndx) = 6 | |
20 | 18, 19 | neeqtrri 3014 | . . . . 5 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
21 | 3, 20 | setsnid 17007 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
22 | 12, 21 | eqtri 2764 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
23 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
24 | eqid 2736 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
25 | 23, 24 | zlmval 20823 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
26 | 25 | fveq2d 6829 | . . 3 ⊢ (𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
27 | 22, 26 | eqtr4id 2795 | . 2 ⊢ (𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
28 | 1 | str0 16987 | . . 3 ⊢ ∅ = (𝐸‘∅) |
29 | fvprc 6817 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
30 | fvprc 6817 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
31 | 23, 30 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
32 | 31 | fveq2d 6829 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝑊) = (𝐸‘∅)) |
33 | 28, 29, 32 | 3eqtr4a 2802 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑊)) |
34 | 27, 33 | pm2.61i 182 | 1 ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4269 〈cop 4579 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 ℝcr 10971 < clt 11110 ℕcn 12074 5c5 12132 6c6 12133 sSet csts 16961 Slot cslot 16979 ndxcnx 16991 Scalarcsca 17062 ·𝑠 cvsca 17063 .gcmg 18796 ℤringczring 20776 ℤModczlm 20808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-sets 16962 df-slot 16980 df-ndx 16992 df-sca 17075 df-vsca 17076 df-zlm 20812 |
This theorem is referenced by: zlmbasOLD 20827 zlmplusgOLD 20829 zlmmulrOLD 20831 |
Copyright terms: Public domain | W3C validator |