Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slotsbhcdif | Structured version Visualization version GIF version |
Description: The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
Ref | Expression |
---|---|
slotsbhcdif | ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basendx 16995 | . . 3 ⊢ (Base‘ndx) = 1 | |
2 | 1re 11054 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 1nn 12063 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | 4nn0 12331 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
5 | 1nn0 12328 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12655 | . . . . . 6 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12554 | . . . . 5 ⊢ 1 < ;14 |
8 | 2, 7 | ltneii 11167 | . . . 4 ⊢ 1 ≠ ;14 |
9 | homndx 17195 | . . . 4 ⊢ (Hom ‘ndx) = ;14 | |
10 | 8, 9 | neeqtrri 3014 | . . 3 ⊢ 1 ≠ (Hom ‘ndx) |
11 | 1, 10 | eqnetri 3011 | . 2 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
12 | 5nn0 12332 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
13 | 3, 12, 5, 6 | declti 12554 | . . . . 5 ⊢ 1 < ;15 |
14 | 2, 13 | ltneii 11167 | . . . 4 ⊢ 1 ≠ ;15 |
15 | ccondx 17197 | . . . 4 ⊢ (comp‘ndx) = ;15 | |
16 | 14, 15 | neeqtrri 3014 | . . 3 ⊢ 1 ≠ (comp‘ndx) |
17 | 1, 16 | eqnetri 3011 | . 2 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
18 | 5, 4 | deccl 12531 | . . . . . 6 ⊢ ;14 ∈ ℕ0 |
19 | 18 | nn0rei 12323 | . . . . 5 ⊢ ;14 ∈ ℝ |
20 | 5nn 12138 | . . . . . 6 ⊢ 5 ∈ ℕ | |
21 | 4lt5 12229 | . . . . . 6 ⊢ 4 < 5 | |
22 | 5, 4, 20, 21 | declt 12544 | . . . . 5 ⊢ ;14 < ;15 |
23 | 19, 22 | ltneii 11167 | . . . 4 ⊢ ;14 ≠ ;15 |
24 | 23, 15 | neeqtrri 3014 | . . 3 ⊢ ;14 ≠ (comp‘ndx) |
25 | 9, 24 | eqnetri 3011 | . 2 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
26 | 11, 17, 25 | 3pm3.2i 1338 | 1 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 ≠ wne 2940 ‘cfv 6465 1c1 10951 4c4 12109 5c5 12110 ;cdc 12516 ndxcnx 16968 Basecbs 16986 Hom chom 17047 compcco 17048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-slot 16957 df-ndx 16969 df-base 16987 df-hom 17060 df-cco 17061 |
This theorem is referenced by: resshom 17203 ressco 17204 oppchomfval 17497 oppcbas 17502 rescbas 17615 rescco 17619 rescabs 17621 estrreslem1 17927 estrreslem1OLD 17928 estrres 17930 prstcbas 46618 prstchomval 46625 |
Copyright terms: Public domain | W3C validator |