![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsbhcdif | Structured version Visualization version GIF version |
Description: The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
Ref | Expression |
---|---|
slotsbhcdif | ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basendx 17186 | . . 3 ⊢ (Base‘ndx) = 1 | |
2 | 1re 11242 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 1nn 12251 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | 4nn0 12519 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
5 | 1nn0 12516 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12844 | . . . . . 6 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12743 | . . . . 5 ⊢ 1 < ;14 |
8 | 2, 7 | ltneii 11355 | . . . 4 ⊢ 1 ≠ ;14 |
9 | homndx 17389 | . . . 4 ⊢ (Hom ‘ndx) = ;14 | |
10 | 8, 9 | neeqtrri 3004 | . . 3 ⊢ 1 ≠ (Hom ‘ndx) |
11 | 1, 10 | eqnetri 3001 | . 2 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
12 | 5nn0 12520 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
13 | 3, 12, 5, 6 | declti 12743 | . . . . 5 ⊢ 1 < ;15 |
14 | 2, 13 | ltneii 11355 | . . . 4 ⊢ 1 ≠ ;15 |
15 | ccondx 17391 | . . . 4 ⊢ (comp‘ndx) = ;15 | |
16 | 14, 15 | neeqtrri 3004 | . . 3 ⊢ 1 ≠ (comp‘ndx) |
17 | 1, 16 | eqnetri 3001 | . 2 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
18 | 5, 4 | deccl 12720 | . . . . . 6 ⊢ ;14 ∈ ℕ0 |
19 | 18 | nn0rei 12511 | . . . . 5 ⊢ ;14 ∈ ℝ |
20 | 5nn 12326 | . . . . . 6 ⊢ 5 ∈ ℕ | |
21 | 4lt5 12417 | . . . . . 6 ⊢ 4 < 5 | |
22 | 5, 4, 20, 21 | declt 12733 | . . . . 5 ⊢ ;14 < ;15 |
23 | 19, 22 | ltneii 11355 | . . . 4 ⊢ ;14 ≠ ;15 |
24 | 23, 15 | neeqtrri 3004 | . . 3 ⊢ ;14 ≠ (comp‘ndx) |
25 | 9, 24 | eqnetri 3001 | . 2 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
26 | 11, 17, 25 | 3pm3.2i 1336 | 1 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 ≠ wne 2930 ‘cfv 6542 1c1 11137 4c4 12297 5c5 12298 ;cdc 12705 ndxcnx 17159 Basecbs 17177 Hom chom 17241 compcco 17242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-slot 17148 df-ndx 17160 df-base 17178 df-hom 17254 df-cco 17255 |
This theorem is referenced by: resshom 17397 ressco 17398 oppchomfval 17691 oppcbas 17696 rescbas 17809 rescco 17813 rescabs 17815 estrreslem1 18124 estrreslem1OLD 18125 estrres 18127 prstcbas 48184 prstchomval 48191 |
Copyright terms: Public domain | W3C validator |