![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsbhcdif | Structured version Visualization version GIF version |
Description: The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
Ref | Expression |
---|---|
slotsbhcdif | ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basendx 17099 | . . 3 ⊢ (Base‘ndx) = 1 | |
2 | 1re 11162 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 1nn 12171 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | 4nn0 12439 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
5 | 1nn0 12436 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12764 | . . . . . 6 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12663 | . . . . 5 ⊢ 1 < ;14 |
8 | 2, 7 | ltneii 11275 | . . . 4 ⊢ 1 ≠ ;14 |
9 | homndx 17299 | . . . 4 ⊢ (Hom ‘ndx) = ;14 | |
10 | 8, 9 | neeqtrri 3018 | . . 3 ⊢ 1 ≠ (Hom ‘ndx) |
11 | 1, 10 | eqnetri 3015 | . 2 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
12 | 5nn0 12440 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
13 | 3, 12, 5, 6 | declti 12663 | . . . . 5 ⊢ 1 < ;15 |
14 | 2, 13 | ltneii 11275 | . . . 4 ⊢ 1 ≠ ;15 |
15 | ccondx 17301 | . . . 4 ⊢ (comp‘ndx) = ;15 | |
16 | 14, 15 | neeqtrri 3018 | . . 3 ⊢ 1 ≠ (comp‘ndx) |
17 | 1, 16 | eqnetri 3015 | . 2 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
18 | 5, 4 | deccl 12640 | . . . . . 6 ⊢ ;14 ∈ ℕ0 |
19 | 18 | nn0rei 12431 | . . . . 5 ⊢ ;14 ∈ ℝ |
20 | 5nn 12246 | . . . . . 6 ⊢ 5 ∈ ℕ | |
21 | 4lt5 12337 | . . . . . 6 ⊢ 4 < 5 | |
22 | 5, 4, 20, 21 | declt 12653 | . . . . 5 ⊢ ;14 < ;15 |
23 | 19, 22 | ltneii 11275 | . . . 4 ⊢ ;14 ≠ ;15 |
24 | 23, 15 | neeqtrri 3018 | . . 3 ⊢ ;14 ≠ (comp‘ndx) |
25 | 9, 24 | eqnetri 3015 | . 2 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
26 | 11, 17, 25 | 3pm3.2i 1340 | 1 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1088 ≠ wne 2944 ‘cfv 6501 1c1 11059 4c4 12217 5c5 12218 ;cdc 12625 ndxcnx 17072 Basecbs 17090 Hom chom 17151 compcco 17152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-n0 12421 df-z 12507 df-dec 12626 df-slot 17061 df-ndx 17073 df-base 17091 df-hom 17164 df-cco 17165 |
This theorem is referenced by: resshom 17307 ressco 17308 oppchomfval 17601 oppcbas 17606 rescbas 17719 rescco 17723 rescabs 17725 estrreslem1 18031 estrreslem1OLD 18032 estrres 18034 prstcbas 47161 prstchomval 47168 |
Copyright terms: Public domain | W3C validator |