![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsbhcdif | Structured version Visualization version GIF version |
Description: The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) |
Ref | Expression |
---|---|
slotsbhcdif | ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 16339 | . . . 4 ⊢ Base = Slot 1 | |
2 | 1nn 11446 | . . . 4 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 16358 | . . 3 ⊢ (Base‘ndx) = 1 |
4 | 1re 10433 | . . . . 5 ⊢ 1 ∈ ℝ | |
5 | 4nn0 11722 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
6 | 1nn0 11719 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12046 | . . . . . 6 ⊢ 1 < ;10 | |
8 | 2, 5, 6, 7 | declti 11944 | . . . . 5 ⊢ 1 < ;14 |
9 | 4, 8 | ltneii 10547 | . . . 4 ⊢ 1 ≠ ;14 |
10 | homndx 16537 | . . . 4 ⊢ (Hom ‘ndx) = ;14 | |
11 | 9, 10 | neeqtrri 3034 | . . 3 ⊢ 1 ≠ (Hom ‘ndx) |
12 | 3, 11 | eqnetri 3031 | . 2 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
13 | 5nn0 11723 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
14 | 2, 13, 6, 7 | declti 11944 | . . . . 5 ⊢ 1 < ;15 |
15 | 4, 14 | ltneii 10547 | . . . 4 ⊢ 1 ≠ ;15 |
16 | ccondx 16539 | . . . 4 ⊢ (comp‘ndx) = ;15 | |
17 | 15, 16 | neeqtrri 3034 | . . 3 ⊢ 1 ≠ (comp‘ndx) |
18 | 3, 17 | eqnetri 3031 | . 2 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
19 | 6, 5 | deccl 11920 | . . . . . 6 ⊢ ;14 ∈ ℕ0 |
20 | 19 | nn0rei 11713 | . . . . 5 ⊢ ;14 ∈ ℝ |
21 | 5nn 11522 | . . . . . 6 ⊢ 5 ∈ ℕ | |
22 | 4lt5 11618 | . . . . . 6 ⊢ 4 < 5 | |
23 | 6, 5, 21, 22 | declt 11934 | . . . . 5 ⊢ ;14 < ;15 |
24 | 20, 23 | ltneii 10547 | . . . 4 ⊢ ;14 ≠ ;15 |
25 | 24, 16 | neeqtrri 3034 | . . 3 ⊢ ;14 ≠ (comp‘ndx) |
26 | 10, 25 | eqnetri 3031 | . 2 ⊢ (Hom ‘ndx) ≠ (comp‘ndx) |
27 | 12, 18, 26 | 3pm3.2i 1319 | 1 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1068 ≠ wne 2961 ‘cfv 6182 1c1 10330 4c4 11491 5c5 11492 ;cdc 11905 ndxcnx 16330 Basecbs 16333 Hom chom 16426 compcco 16427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-7 11502 df-8 11503 df-9 11504 df-n0 11702 df-z 11788 df-dec 11906 df-ndx 16336 df-slot 16337 df-base 16339 df-hom 16439 df-cco 16440 |
This theorem is referenced by: estrreslem1 17239 estrres 17241 |
Copyright terms: Public domain | W3C validator |