![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tnglemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tnglem 24674 as of 31-Oct-2024. Lemma for tngbas 24676 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tnglemOLD.2 | ⊢ 𝐸 = Slot 𝐾 |
tnglemOLD.3 | ⊢ 𝐾 ∈ ℕ |
tnglemOLD.4 | ⊢ 𝐾 < 9 |
Ref | Expression |
---|---|
tnglemOLD | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tnglemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝐾 | |
2 | tnglemOLD.3 | . . . . . 6 ⊢ 𝐾 ∈ ℕ | |
3 | 1, 2 | ndxid 17244 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 17243 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝐾 |
5 | 2 | nnrei 12302 | . . . . . . . 8 ⊢ 𝐾 ∈ ℝ |
6 | 4, 5 | eqeltri 2840 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | tnglemOLD.4 | . . . . . . . . 9 ⊢ 𝐾 < 9 | |
8 | 4, 7 | eqbrtri 5187 | . . . . . . . 8 ⊢ (𝐸‘ndx) < 9 |
9 | 1nn 12304 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
10 | 2nn0 12570 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
11 | 9nn0 12577 | . . . . . . . . 9 ⊢ 9 ∈ ℕ0 | |
12 | 9lt10 12889 | . . . . . . . . 9 ⊢ 9 < ;10 | |
13 | 9, 10, 11, 12 | declti 12796 | . . . . . . . 8 ⊢ 9 < ;12 |
14 | 9re 12392 | . . . . . . . . 9 ⊢ 9 ∈ ℝ | |
15 | 1nn0 12569 | . . . . . . . . . . 11 ⊢ 1 ∈ ℕ0 | |
16 | 15, 10 | deccl 12773 | . . . . . . . . . 10 ⊢ ;12 ∈ ℕ0 |
17 | 16 | nn0rei 12564 | . . . . . . . . 9 ⊢ ;12 ∈ ℝ |
18 | 6, 14, 17 | lttri 11416 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 9 ∧ 9 < ;12) → (𝐸‘ndx) < ;12) |
19 | 8, 13, 18 | mp2an 691 | . . . . . . 7 ⊢ (𝐸‘ndx) < ;12 |
20 | 6, 19 | ltneii 11403 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ ;12 |
21 | dsndx 17444 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
22 | 20, 21 | neeqtrri 3020 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
23 | 3, 22 | setsnid 17256 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
24 | 6, 8 | ltneii 11403 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 9 |
25 | tsetndx 17411 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
26 | 24, 25 | neeqtrri 3020 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
27 | 3, 26 | setsnid 17256 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
28 | 23, 27 | eqtri 2768 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
29 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
30 | eqid 2740 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
31 | eqid 2740 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
32 | eqid 2740 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
33 | 29, 30, 31, 32 | tngval 24673 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
34 | 33 | fveq2d 6924 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
35 | 28, 34 | eqtr4id 2799 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
36 | 1 | str0 17236 | . . 3 ⊢ ∅ = (𝐸‘∅) |
37 | fvprc 6912 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
38 | 37 | adantr 480 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = ∅) |
39 | reldmtng 24672 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
40 | 39 | ovprc1 7487 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
41 | 40 | adantr 480 | . . . . 5 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐺 toNrmGrp 𝑁) = ∅) |
42 | 29, 41 | eqtrid 2792 | . . . 4 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ∅) |
43 | 42 | fveq2d 6924 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘∅)) |
44 | 36, 38, 43 | 3eqtr4a 2806 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
45 | 35, 44 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 class class class wbr 5166 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 1c1 11185 < clt 11324 ℕcn 12293 2c2 12348 9c9 12355 ;cdc 12758 sSet csts 17210 Slot cslot 17228 ndxcnx 17240 TopSetcts 17317 distcds 17320 -gcsg 18975 MetOpencmopn 21377 toNrmGrp ctng 24612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-tset 17330 df-ds 17333 df-tng 24618 |
This theorem is referenced by: tngbasOLD 24677 tngplusgOLD 24679 tngmulrOLD 24682 tngscaOLD 24684 tngvscaOLD 24686 tngipOLD 24688 |
Copyright terms: Public domain | W3C validator |