| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tnglemOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of tnglem 24653 as of 31-Oct-2024. Lemma for tngbas 24655 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| tnglemOLD.2 | ⊢ 𝐸 = Slot 𝐾 |
| tnglemOLD.3 | ⊢ 𝐾 ∈ ℕ |
| tnglemOLD.4 | ⊢ 𝐾 < 9 |
| Ref | Expression |
|---|---|
| tnglemOLD | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tnglemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝐾 | |
| 2 | tnglemOLD.3 | . . . . . 6 ⊢ 𝐾 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17234 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | 1, 2 | ndxarg 17233 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝐾 |
| 5 | 2 | nnrei 12275 | . . . . . . . 8 ⊢ 𝐾 ∈ ℝ |
| 6 | 4, 5 | eqeltri 2837 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
| 7 | tnglemOLD.4 | . . . . . . . . 9 ⊢ 𝐾 < 9 | |
| 8 | 4, 7 | eqbrtri 5164 | . . . . . . . 8 ⊢ (𝐸‘ndx) < 9 |
| 9 | 1nn 12277 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 10 | 2nn0 12543 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 11 | 9nn0 12550 | . . . . . . . . 9 ⊢ 9 ∈ ℕ0 | |
| 12 | 9lt10 12864 | . . . . . . . . 9 ⊢ 9 < ;10 | |
| 13 | 9, 10, 11, 12 | declti 12771 | . . . . . . . 8 ⊢ 9 < ;12 |
| 14 | 9re 12365 | . . . . . . . . 9 ⊢ 9 ∈ ℝ | |
| 15 | 1nn0 12542 | . . . . . . . . . . 11 ⊢ 1 ∈ ℕ0 | |
| 16 | 15, 10 | deccl 12748 | . . . . . . . . . 10 ⊢ ;12 ∈ ℕ0 |
| 17 | 16 | nn0rei 12537 | . . . . . . . . 9 ⊢ ;12 ∈ ℝ |
| 18 | 6, 14, 17 | lttri 11387 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 9 ∧ 9 < ;12) → (𝐸‘ndx) < ;12) |
| 19 | 8, 13, 18 | mp2an 692 | . . . . . . 7 ⊢ (𝐸‘ndx) < ;12 |
| 20 | 6, 19 | ltneii 11374 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ ;12 |
| 21 | dsndx 17429 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
| 22 | 20, 21 | neeqtrri 3014 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
| 23 | 3, 22 | setsnid 17245 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
| 24 | 6, 8 | ltneii 11374 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 9 |
| 25 | tsetndx 17396 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
| 26 | 24, 25 | neeqtrri 3014 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
| 27 | 3, 26 | setsnid 17245 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 28 | 23, 27 | eqtri 2765 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 29 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
| 30 | eqid 2737 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 31 | eqid 2737 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
| 32 | eqid 2737 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
| 33 | 29, 30, 31, 32 | tngval 24652 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 34 | 33 | fveq2d 6910 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
| 35 | 28, 34 | eqtr4id 2796 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| 36 | 1 | str0 17226 | . . 3 ⊢ ∅ = (𝐸‘∅) |
| 37 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
| 38 | 37 | adantr 480 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = ∅) |
| 39 | reldmtng 24651 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
| 40 | 39 | ovprc1 7470 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
| 41 | 40 | adantr 480 | . . . . 5 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐺 toNrmGrp 𝑁) = ∅) |
| 42 | 29, 41 | eqtrid 2789 | . . . 4 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ∅) |
| 43 | 42 | fveq2d 6910 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘∅)) |
| 44 | 36, 38, 43 | 3eqtr4a 2803 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| 45 | 35, 44 | pm2.61ian 812 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∅c0 4333 〈cop 4632 class class class wbr 5143 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 1c1 11156 < clt 11295 ℕcn 12266 2c2 12321 9c9 12328 ;cdc 12733 sSet csts 17200 Slot cslot 17218 ndxcnx 17230 TopSetcts 17303 distcds 17306 -gcsg 18953 MetOpencmopn 21354 toNrmGrp ctng 24591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-sets 17201 df-slot 17219 df-ndx 17231 df-tset 17316 df-ds 17319 df-tng 24597 |
| This theorem is referenced by: tngbasOLD 24656 tngplusgOLD 24658 tngmulrOLD 24661 tngscaOLD 24663 tngvscaOLD 24665 tngipOLD 24667 |
| Copyright terms: Public domain | W3C validator |