![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tnglemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tnglem 24610 as of 31-Oct-2024. Lemma for tngbas 24612 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tnglemOLD.2 | ⊢ 𝐸 = Slot 𝐾 |
tnglemOLD.3 | ⊢ 𝐾 ∈ ℕ |
tnglemOLD.4 | ⊢ 𝐾 < 9 |
Ref | Expression |
---|---|
tnglemOLD | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tnglemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝐾 | |
2 | tnglemOLD.3 | . . . . . 6 ⊢ 𝐾 ∈ ℕ | |
3 | 1, 2 | ndxid 17185 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 17184 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝐾 |
5 | 2 | nnrei 12259 | . . . . . . . 8 ⊢ 𝐾 ∈ ℝ |
6 | 4, 5 | eqeltri 2821 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | tnglemOLD.4 | . . . . . . . . 9 ⊢ 𝐾 < 9 | |
8 | 4, 7 | eqbrtri 5170 | . . . . . . . 8 ⊢ (𝐸‘ndx) < 9 |
9 | 1nn 12261 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
10 | 2nn0 12527 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
11 | 9nn0 12534 | . . . . . . . . 9 ⊢ 9 ∈ ℕ0 | |
12 | 9lt10 12846 | . . . . . . . . 9 ⊢ 9 < ;10 | |
13 | 9, 10, 11, 12 | declti 12753 | . . . . . . . 8 ⊢ 9 < ;12 |
14 | 9re 12349 | . . . . . . . . 9 ⊢ 9 ∈ ℝ | |
15 | 1nn0 12526 | . . . . . . . . . . 11 ⊢ 1 ∈ ℕ0 | |
16 | 15, 10 | deccl 12730 | . . . . . . . . . 10 ⊢ ;12 ∈ ℕ0 |
17 | 16 | nn0rei 12521 | . . . . . . . . 9 ⊢ ;12 ∈ ℝ |
18 | 6, 14, 17 | lttri 11377 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 9 ∧ 9 < ;12) → (𝐸‘ndx) < ;12) |
19 | 8, 13, 18 | mp2an 690 | . . . . . . 7 ⊢ (𝐸‘ndx) < ;12 |
20 | 6, 19 | ltneii 11364 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ ;12 |
21 | dsndx 17385 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
22 | 20, 21 | neeqtrri 3003 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
23 | 3, 22 | setsnid 17197 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
24 | 6, 8 | ltneii 11364 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 9 |
25 | tsetndx 17352 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
26 | 24, 25 | neeqtrri 3003 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
27 | 3, 26 | setsnid 17197 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
28 | 23, 27 | eqtri 2753 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
29 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
30 | eqid 2725 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
31 | eqid 2725 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
32 | eqid 2725 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
33 | 29, 30, 31, 32 | tngval 24609 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
34 | 33 | fveq2d 6900 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
35 | 28, 34 | eqtr4id 2784 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
36 | 1 | str0 17177 | . . 3 ⊢ ∅ = (𝐸‘∅) |
37 | fvprc 6888 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
38 | 37 | adantr 479 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = ∅) |
39 | reldmtng 24608 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
40 | 39 | ovprc1 7458 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
41 | 40 | adantr 479 | . . . . 5 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐺 toNrmGrp 𝑁) = ∅) |
42 | 29, 41 | eqtrid 2777 | . . . 4 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ∅) |
43 | 42 | fveq2d 6900 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘∅)) |
44 | 36, 38, 43 | 3eqtr4a 2791 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
45 | 35, 44 | pm2.61ian 810 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∅c0 4322 〈cop 4636 class class class wbr 5149 ∘ ccom 5682 ‘cfv 6549 (class class class)co 7419 ℝcr 11144 1c1 11146 < clt 11285 ℕcn 12250 2c2 12305 9c9 12312 ;cdc 12715 sSet csts 17151 Slot cslot 17169 ndxcnx 17181 TopSetcts 17258 distcds 17261 -gcsg 18916 MetOpencmopn 21303 toNrmGrp ctng 24548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-sets 17152 df-slot 17170 df-ndx 17182 df-tset 17271 df-ds 17274 df-tng 24554 |
This theorem is referenced by: tngbasOLD 24613 tngplusgOLD 24615 tngmulrOLD 24618 tngscaOLD 24620 tngvscaOLD 24622 tngipOLD 24624 |
Copyright terms: Public domain | W3C validator |