MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tnglemOLD Structured version   Visualization version   GIF version

Theorem tnglemOLD 24611
Description: Obsolete version of tnglem 24610 as of 31-Oct-2024. Lemma for tngbas 24612 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tnglemOLD.2 𝐸 = Slot 𝐾
tnglemOLD.3 𝐾 ∈ ℕ
tnglemOLD.4 𝐾 < 9
Assertion
Ref Expression
tnglemOLD (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))

Proof of Theorem tnglemOLD
StepHypRef Expression
1 tnglemOLD.2 . . . . . 6 𝐸 = Slot 𝐾
2 tnglemOLD.3 . . . . . 6 𝐾 ∈ ℕ
31, 2ndxid 17185 . . . . 5 𝐸 = Slot (𝐸‘ndx)
41, 2ndxarg 17184 . . . . . . . 8 (𝐸‘ndx) = 𝐾
52nnrei 12259 . . . . . . . 8 𝐾 ∈ ℝ
64, 5eqeltri 2821 . . . . . . 7 (𝐸‘ndx) ∈ ℝ
7 tnglemOLD.4 . . . . . . . . 9 𝐾 < 9
84, 7eqbrtri 5170 . . . . . . . 8 (𝐸‘ndx) < 9
9 1nn 12261 . . . . . . . . 9 1 ∈ ℕ
10 2nn0 12527 . . . . . . . . 9 2 ∈ ℕ0
11 9nn0 12534 . . . . . . . . 9 9 ∈ ℕ0
12 9lt10 12846 . . . . . . . . 9 9 < 10
139, 10, 11, 12declti 12753 . . . . . . . 8 9 < 12
14 9re 12349 . . . . . . . . 9 9 ∈ ℝ
15 1nn0 12526 . . . . . . . . . . 11 1 ∈ ℕ0
1615, 10deccl 12730 . . . . . . . . . 10 12 ∈ ℕ0
1716nn0rei 12521 . . . . . . . . 9 12 ∈ ℝ
186, 14, 17lttri 11377 . . . . . . . 8 (((𝐸‘ndx) < 9 ∧ 9 < 12) → (𝐸‘ndx) < 12)
198, 13, 18mp2an 690 . . . . . . 7 (𝐸‘ndx) < 12
206, 19ltneii 11364 . . . . . 6 (𝐸‘ndx) ≠ 12
21 dsndx 17385 . . . . . 6 (dist‘ndx) = 12
2220, 21neeqtrri 3003 . . . . 5 (𝐸‘ndx) ≠ (dist‘ndx)
233, 22setsnid 17197 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩))
246, 8ltneii 11364 . . . . . 6 (𝐸‘ndx) ≠ 9
25 tsetndx 17352 . . . . . 6 (TopSet‘ndx) = 9
2624, 25neeqtrri 3003 . . . . 5 (𝐸‘ndx) ≠ (TopSet‘ndx)
273, 26setsnid 17197 . . . 4 (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩)) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
2823, 27eqtri 2753 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
29 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
30 eqid 2725 . . . . 5 (-g𝐺) = (-g𝐺)
31 eqid 2725 . . . . 5 (𝑁 ∘ (-g𝐺)) = (𝑁 ∘ (-g𝐺))
32 eqid 2725 . . . . 5 (MetOpen‘(𝑁 ∘ (-g𝐺))) = (MetOpen‘(𝑁 ∘ (-g𝐺)))
3329, 30, 31, 32tngval 24609 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
3433fveq2d 6900 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩)))
3528, 34eqtr4id 2784 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
361str0 17177 . . 3 ∅ = (𝐸‘∅)
37 fvprc 6888 . . . 4 𝐺 ∈ V → (𝐸𝐺) = ∅)
3837adantr 479 . . 3 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = ∅)
39 reldmtng 24608 . . . . . . 7 Rel dom toNrmGrp
4039ovprc1 7458 . . . . . 6 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅)
4140adantr 479 . . . . 5 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐺 toNrmGrp 𝑁) = ∅)
4229, 41eqtrid 2777 . . . 4 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ∅)
4342fveq2d 6900 . . 3 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘∅))
4436, 38, 433eqtr4a 2791 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
4535, 44pm2.61ian 810 1 (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  c0 4322  cop 4636   class class class wbr 5149  ccom 5682  cfv 6549  (class class class)co 7419  cr 11144  1c1 11146   < clt 11285  cn 12250  2c2 12305  9c9 12312  cdc 12715   sSet csts 17151  Slot cslot 17169  ndxcnx 17181  TopSetcts 17258  distcds 17261  -gcsg 18916  MetOpencmopn 21303   toNrmGrp ctng 24548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-sets 17152  df-slot 17170  df-ndx 17182  df-tset 17271  df-ds 17274  df-tng 24554
This theorem is referenced by:  tngbasOLD  24613  tngplusgOLD  24615  tngmulrOLD  24618  tngscaOLD  24620  tngvscaOLD  24622  tngipOLD  24624
  Copyright terms: Public domain W3C validator