Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tnglemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tnglem 23677 as of 31-Oct-2024. Lemma for tngbas 23679 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tnglemOLD.2 | ⊢ 𝐸 = Slot 𝐾 |
tnglemOLD.3 | ⊢ 𝐾 ∈ ℕ |
tnglemOLD.4 | ⊢ 𝐾 < 9 |
Ref | Expression |
---|---|
tnglemOLD | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tnglemOLD.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝐾 | |
2 | tnglemOLD.3 | . . . . . 6 ⊢ 𝐾 ∈ ℕ | |
3 | 1, 2 | ndxid 16801 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 16800 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝐾 |
5 | 2 | nnrei 11887 | . . . . . . . 8 ⊢ 𝐾 ∈ ℝ |
6 | 4, 5 | eqeltri 2836 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | tnglemOLD.4 | . . . . . . . . 9 ⊢ 𝐾 < 9 | |
8 | 4, 7 | eqbrtri 5091 | . . . . . . . 8 ⊢ (𝐸‘ndx) < 9 |
9 | 1nn 11889 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
10 | 2nn0 12155 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
11 | 9nn0 12162 | . . . . . . . . 9 ⊢ 9 ∈ ℕ0 | |
12 | 9lt10 12472 | . . . . . . . . 9 ⊢ 9 < ;10 | |
13 | 9, 10, 11, 12 | declti 12379 | . . . . . . . 8 ⊢ 9 < ;12 |
14 | 9re 11977 | . . . . . . . . 9 ⊢ 9 ∈ ℝ | |
15 | 1nn0 12154 | . . . . . . . . . . 11 ⊢ 1 ∈ ℕ0 | |
16 | 15, 10 | deccl 12356 | . . . . . . . . . 10 ⊢ ;12 ∈ ℕ0 |
17 | 16 | nn0rei 12149 | . . . . . . . . 9 ⊢ ;12 ∈ ℝ |
18 | 6, 14, 17 | lttri 11006 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 9 ∧ 9 < ;12) → (𝐸‘ndx) < ;12) |
19 | 8, 13, 18 | mp2an 692 | . . . . . . 7 ⊢ (𝐸‘ndx) < ;12 |
20 | 6, 19 | ltneii 10993 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ ;12 |
21 | dsndx 16991 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
22 | 20, 21 | neeqtrri 3017 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
23 | 3, 22 | setsnid 16813 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
24 | 6, 8 | ltneii 10993 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 9 |
25 | tsetndx 16962 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
26 | 24, 25 | neeqtrri 3017 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
27 | 3, 26 | setsnid 16813 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
28 | 23, 27 | eqtri 2767 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
29 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
30 | eqid 2739 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
31 | eqid 2739 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
32 | eqid 2739 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
33 | 29, 30, 31, 32 | tngval 23676 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
34 | 33 | fveq2d 6757 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
35 | 28, 34 | eqtr4id 2799 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
36 | 1 | str0 16793 | . . 3 ⊢ ∅ = (𝐸‘∅) |
37 | fvprc 6745 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
38 | 37 | adantr 484 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = ∅) |
39 | reldmtng 23675 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
40 | 39 | ovprc1 7291 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
41 | 40 | adantr 484 | . . . . 5 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐺 toNrmGrp 𝑁) = ∅) |
42 | 29, 41 | syl5eq 2792 | . . . 4 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ∅) |
43 | 42 | fveq2d 6757 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘∅)) |
44 | 36, 38, 43 | 3eqtr4a 2806 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
45 | 35, 44 | pm2.61ian 812 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∅c0 4254 〈cop 4564 class class class wbr 5070 ∘ ccom 5583 ‘cfv 6415 (class class class)co 7252 ℝcr 10776 1c1 10778 < clt 10915 ℕcn 11878 2c2 11933 9c9 11940 ;cdc 12341 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 TopSetcts 16869 distcds 16872 -gcsg 18469 MetOpencmopn 20475 toNrmGrp ctng 23615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-sets 16768 df-slot 16786 df-ndx 16798 df-tset 16882 df-ds 16885 df-tng 23621 |
This theorem is referenced by: tngbasOLD 23680 tngplusgOLD 23682 tngmulrOLD 23685 tngscaOLD 23687 tngvscaOLD 23689 tngipOLD 23691 |
Copyright terms: Public domain | W3C validator |