MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tnglemOLD Structured version   Visualization version   GIF version

Theorem tnglemOLD 23997
Description: Obsolete version of tnglem 23996 as of 31-Oct-2024. Lemma for tngbas 23998 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tnglemOLD.2 𝐸 = Slot 𝐾
tnglemOLD.3 𝐾 ∈ ℕ
tnglemOLD.4 𝐾 < 9
Assertion
Ref Expression
tnglemOLD (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))

Proof of Theorem tnglemOLD
StepHypRef Expression
1 tnglemOLD.2 . . . . . 6 𝐸 = Slot 𝐾
2 tnglemOLD.3 . . . . . 6 𝐾 ∈ ℕ
31, 2ndxid 17069 . . . . 5 𝐸 = Slot (𝐸‘ndx)
41, 2ndxarg 17068 . . . . . . . 8 (𝐸‘ndx) = 𝐾
52nnrei 12162 . . . . . . . 8 𝐾 ∈ ℝ
64, 5eqeltri 2834 . . . . . . 7 (𝐸‘ndx) ∈ ℝ
7 tnglemOLD.4 . . . . . . . . 9 𝐾 < 9
84, 7eqbrtri 5126 . . . . . . . 8 (𝐸‘ndx) < 9
9 1nn 12164 . . . . . . . . 9 1 ∈ ℕ
10 2nn0 12430 . . . . . . . . 9 2 ∈ ℕ0
11 9nn0 12437 . . . . . . . . 9 9 ∈ ℕ0
12 9lt10 12749 . . . . . . . . 9 9 < 10
139, 10, 11, 12declti 12656 . . . . . . . 8 9 < 12
14 9re 12252 . . . . . . . . 9 9 ∈ ℝ
15 1nn0 12429 . . . . . . . . . . 11 1 ∈ ℕ0
1615, 10deccl 12633 . . . . . . . . . 10 12 ∈ ℕ0
1716nn0rei 12424 . . . . . . . . 9 12 ∈ ℝ
186, 14, 17lttri 11281 . . . . . . . 8 (((𝐸‘ndx) < 9 ∧ 9 < 12) → (𝐸‘ndx) < 12)
198, 13, 18mp2an 690 . . . . . . 7 (𝐸‘ndx) < 12
206, 19ltneii 11268 . . . . . 6 (𝐸‘ndx) ≠ 12
21 dsndx 17266 . . . . . 6 (dist‘ndx) = 12
2220, 21neeqtrri 3017 . . . . 5 (𝐸‘ndx) ≠ (dist‘ndx)
233, 22setsnid 17081 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩))
246, 8ltneii 11268 . . . . . 6 (𝐸‘ndx) ≠ 9
25 tsetndx 17233 . . . . . 6 (TopSet‘ndx) = 9
2624, 25neeqtrri 3017 . . . . 5 (𝐸‘ndx) ≠ (TopSet‘ndx)
273, 26setsnid 17081 . . . 4 (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩)) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
2823, 27eqtri 2764 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
29 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
30 eqid 2736 . . . . 5 (-g𝐺) = (-g𝐺)
31 eqid 2736 . . . . 5 (𝑁 ∘ (-g𝐺)) = (𝑁 ∘ (-g𝐺))
32 eqid 2736 . . . . 5 (MetOpen‘(𝑁 ∘ (-g𝐺))) = (MetOpen‘(𝑁 ∘ (-g𝐺)))
3329, 30, 31, 32tngval 23995 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
3433fveq2d 6846 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩)))
3528, 34eqtr4id 2795 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
361str0 17061 . . 3 ∅ = (𝐸‘∅)
37 fvprc 6834 . . . 4 𝐺 ∈ V → (𝐸𝐺) = ∅)
3837adantr 481 . . 3 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = ∅)
39 reldmtng 23994 . . . . . . 7 Rel dom toNrmGrp
4039ovprc1 7396 . . . . . 6 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅)
4140adantr 481 . . . . 5 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐺 toNrmGrp 𝑁) = ∅)
4229, 41eqtrid 2788 . . . 4 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ∅)
4342fveq2d 6846 . . 3 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘∅))
4436, 38, 433eqtr4a 2802 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
4535, 44pm2.61ian 810 1 (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  c0 4282  cop 4592   class class class wbr 5105  ccom 5637  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   < clt 11189  cn 12153  2c2 12208  9c9 12215  cdc 12618   sSet csts 17035  Slot cslot 17053  ndxcnx 17065  TopSetcts 17139  distcds 17142  -gcsg 18750  MetOpencmopn 20786   toNrmGrp ctng 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-sets 17036  df-slot 17054  df-ndx 17066  df-tset 17152  df-ds 17155  df-tng 23940
This theorem is referenced by:  tngbasOLD  23999  tngplusgOLD  24001  tngmulrOLD  24004  tngscaOLD  24006  tngvscaOLD  24008  tngipOLD  24010
  Copyright terms: Public domain W3C validator