MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resslemOLD Structured version   Visualization version   GIF version

Theorem resslemOLD 16952
Description: Obsolete version of resseqnbas 16951 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
resslemOLD.r 𝑅 = (𝑊s 𝐴)
resslemOLD.e 𝐶 = (𝐸𝑊)
resslemOLD.f 𝐸 = Slot 𝑁
resslemOLD.n 𝑁 ∈ ℕ
resslemOLD.b 1 < 𝑁
Assertion
Ref Expression
resslemOLD (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resslemOLD
StepHypRef Expression
1 resslemOLD.e . 2 𝐶 = (𝐸𝑊)
2 resslemOLD.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
3 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
42, 3ressid2 16945 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
54fveq2d 6778 . . . . 5 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
653expib 1121 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
72, 3ressval2 16946 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 6778 . . . . . 6 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 resslemOLD.f . . . . . . . 8 𝐸 = Slot 𝑁
10 resslemOLD.n . . . . . . . 8 𝑁 ∈ ℕ
119, 10ndxid 16898 . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
129, 10ndxarg 16897 . . . . . . . . 9 (𝐸‘ndx) = 𝑁
13 1re 10975 . . . . . . . . . 10 1 ∈ ℝ
14 resslemOLD.b . . . . . . . . . 10 1 < 𝑁
1513, 14gtneii 11087 . . . . . . . . 9 𝑁 ≠ 1
1612, 15eqnetri 3014 . . . . . . . 8 (𝐸‘ndx) ≠ 1
17 basendx 16921 . . . . . . . 8 (Base‘ndx) = 1
1816, 17neeqtrri 3017 . . . . . . 7 (𝐸‘ndx) ≠ (Base‘ndx)
1911, 18setsnid 16910 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
208, 19eqtr4di 2796 . . . . 5 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
21203expib 1121 . . . 4 (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
226, 21pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
23 reldmress 16943 . . . . . . . . 9 Rel dom ↾s
2423ovprc1 7314 . . . . . . . 8 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
252, 24eqtrid 2790 . . . . . . 7 𝑊 ∈ V → 𝑅 = ∅)
2625fveq2d 6778 . . . . . 6 𝑊 ∈ V → (𝐸𝑅) = (𝐸‘∅))
279str0 16890 . . . . . 6 ∅ = (𝐸‘∅)
2826, 27eqtr4di 2796 . . . . 5 𝑊 ∈ V → (𝐸𝑅) = ∅)
29 fvprc 6766 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = ∅)
3028, 29eqtr4d 2781 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
3130adantr 481 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
3222, 31pm2.61ian 809 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
331, 32eqtr4id 2797 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  c0 4256  cop 4567   class class class wbr 5074  cfv 6433  (class class class)co 7275  1c1 10872   < clt 11009  cn 11973   sSet csts 16864  Slot cslot 16882  ndxcnx 16894  Basecbs 16912  s cress 16941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-mulrcl 10934  ax-i2m1 10939  ax-1ne0 10940  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-nn 11974  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator