Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of resseqnbas 16951 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resslemOLD.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
resslemOLD.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resslemOLD.f | ⊢ 𝐸 = Slot 𝑁 |
resslemOLD.n | ⊢ 𝑁 ∈ ℕ |
resslemOLD.b | ⊢ 1 < 𝑁 |
Ref | Expression |
---|---|
resslemOLD | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resslemOLD.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resslemOLD.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 2, 3 | ressid2 16945 | . . . . . 6 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
5 | 4 | fveq2d 6778 | . . . . 5 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
6 | 5 | 3expib 1121 | . . . 4 ⊢ ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
7 | 2, 3 | ressval2 16946 | . . . . . . 7 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
8 | 7 | fveq2d 6778 | . . . . . 6 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
9 | resslemOLD.f | . . . . . . . 8 ⊢ 𝐸 = Slot 𝑁 | |
10 | resslemOLD.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
11 | 9, 10 | ndxid 16898 | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) |
12 | 9, 10 | ndxarg 16897 | . . . . . . . . 9 ⊢ (𝐸‘ndx) = 𝑁 |
13 | 1re 10975 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
14 | resslemOLD.b | . . . . . . . . . 10 ⊢ 1 < 𝑁 | |
15 | 13, 14 | gtneii 11087 | . . . . . . . . 9 ⊢ 𝑁 ≠ 1 |
16 | 12, 15 | eqnetri 3014 | . . . . . . . 8 ⊢ (𝐸‘ndx) ≠ 1 |
17 | basendx 16921 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
18 | 16, 17 | neeqtrri 3017 | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
19 | 11, 18 | setsnid 16910 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
20 | 8, 19 | eqtr4di 2796 | . . . . 5 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
21 | 20 | 3expib 1121 | . . . 4 ⊢ (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
22 | 6, 21 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
23 | reldmress 16943 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
24 | 23 | ovprc1 7314 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
25 | 2, 24 | eqtrid 2790 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → 𝑅 = ∅) |
26 | 25 | fveq2d 6778 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘∅)) |
27 | 9 | str0 16890 | . . . . . 6 ⊢ ∅ = (𝐸‘∅) |
28 | 26, 27 | eqtr4di 2796 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = ∅) |
29 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
30 | 28, 29 | eqtr4d 2781 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
31 | 30 | adantr 481 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
32 | 22, 31 | pm2.61ian 809 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
33 | 1, 32 | eqtr4id 2797 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 〈cop 4567 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 1c1 10872 < clt 11009 ℕcn 11973 sSet csts 16864 Slot cslot 16882 ndxcnx 16894 Basecbs 16912 ↾s cress 16941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |