Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of resseqnbas 16877 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resslemOLD.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
resslemOLD.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resslemOLD.f | ⊢ 𝐸 = Slot 𝑁 |
resslemOLD.n | ⊢ 𝑁 ∈ ℕ |
resslemOLD.b | ⊢ 1 < 𝑁 |
Ref | Expression |
---|---|
resslemOLD | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resslemOLD.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resslemOLD.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 2, 3 | ressid2 16871 | . . . . . 6 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
5 | 4 | fveq2d 6760 | . . . . 5 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
6 | 5 | 3expib 1120 | . . . 4 ⊢ ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
7 | 2, 3 | ressval2 16872 | . . . . . . 7 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
8 | 7 | fveq2d 6760 | . . . . . 6 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
9 | resslemOLD.f | . . . . . . . 8 ⊢ 𝐸 = Slot 𝑁 | |
10 | resslemOLD.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
11 | 9, 10 | ndxid 16826 | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) |
12 | 9, 10 | ndxarg 16825 | . . . . . . . . 9 ⊢ (𝐸‘ndx) = 𝑁 |
13 | 1re 10906 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
14 | resslemOLD.b | . . . . . . . . . 10 ⊢ 1 < 𝑁 | |
15 | 13, 14 | gtneii 11017 | . . . . . . . . 9 ⊢ 𝑁 ≠ 1 |
16 | 12, 15 | eqnetri 3013 | . . . . . . . 8 ⊢ (𝐸‘ndx) ≠ 1 |
17 | basendx 16849 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
18 | 16, 17 | neeqtrri 3016 | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
19 | 11, 18 | setsnid 16838 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
20 | 8, 19 | eqtr4di 2797 | . . . . 5 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
21 | 20 | 3expib 1120 | . . . 4 ⊢ (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
22 | 6, 21 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
23 | reldmress 16869 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
24 | 23 | ovprc1 7294 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
25 | 2, 24 | eqtrid 2790 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → 𝑅 = ∅) |
26 | 25 | fveq2d 6760 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘∅)) |
27 | 9 | str0 16818 | . . . . . 6 ⊢ ∅ = (𝐸‘∅) |
28 | 26, 27 | eqtr4di 2797 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = ∅) |
29 | fvprc 6748 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
30 | 28, 29 | eqtr4d 2781 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
31 | 30 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
32 | 22, 31 | pm2.61ian 808 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
33 | 1, 32 | eqtr4id 2798 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 < clt 10940 ℕcn 11903 sSet csts 16792 Slot cslot 16810 ndxcnx 16822 Basecbs 16840 ↾s cress 16867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-nn 11904 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |