Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of resseqnbas 17048 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resslemOLD.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
resslemOLD.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resslemOLD.f | ⊢ 𝐸 = Slot 𝑁 |
resslemOLD.n | ⊢ 𝑁 ∈ ℕ |
resslemOLD.b | ⊢ 1 < 𝑁 |
Ref | Expression |
---|---|
resslemOLD | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resslemOLD.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resslemOLD.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
3 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 2, 3 | ressid2 17042 | . . . . . 6 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
5 | 4 | fveq2d 6829 | . . . . 5 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
6 | 5 | 3expib 1121 | . . . 4 ⊢ ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
7 | 2, 3 | ressval2 17043 | . . . . . . 7 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
8 | 7 | fveq2d 6829 | . . . . . 6 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
9 | resslemOLD.f | . . . . . . . 8 ⊢ 𝐸 = Slot 𝑁 | |
10 | resslemOLD.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
11 | 9, 10 | ndxid 16995 | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) |
12 | 9, 10 | ndxarg 16994 | . . . . . . . . 9 ⊢ (𝐸‘ndx) = 𝑁 |
13 | 1re 11076 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
14 | resslemOLD.b | . . . . . . . . . 10 ⊢ 1 < 𝑁 | |
15 | 13, 14 | gtneii 11188 | . . . . . . . . 9 ⊢ 𝑁 ≠ 1 |
16 | 12, 15 | eqnetri 3011 | . . . . . . . 8 ⊢ (𝐸‘ndx) ≠ 1 |
17 | basendx 17018 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
18 | 16, 17 | neeqtrri 3014 | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
19 | 11, 18 | setsnid 17007 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
20 | 8, 19 | eqtr4di 2794 | . . . . 5 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
21 | 20 | 3expib 1121 | . . . 4 ⊢ (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
22 | 6, 21 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
23 | reldmress 17040 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
24 | 23 | ovprc1 7376 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
25 | 2, 24 | eqtrid 2788 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → 𝑅 = ∅) |
26 | 25 | fveq2d 6829 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘∅)) |
27 | 9 | str0 16987 | . . . . . 6 ⊢ ∅ = (𝐸‘∅) |
28 | 26, 27 | eqtr4di 2794 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = ∅) |
29 | fvprc 6817 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
30 | 28, 29 | eqtr4d 2779 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
31 | 30 | adantr 481 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
32 | 22, 31 | pm2.61ian 809 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
33 | 1, 32 | eqtr4id 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∩ cin 3897 ⊆ wss 3898 ∅c0 4269 〈cop 4579 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 1c1 10973 < clt 11110 ℕcn 12074 sSet csts 16961 Slot cslot 16979 ndxcnx 16991 Basecbs 17009 ↾s cress 17038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-mulcl 11034 ax-mulrcl 11035 ax-i2m1 11040 ax-1ne0 11041 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-ltxr 11115 df-nn 12075 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |