![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of resseqnbas 17186 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resslemOLD.r | β’ π = (π βΎs π΄) |
resslemOLD.e | β’ πΆ = (πΈβπ) |
resslemOLD.f | β’ πΈ = Slot π |
resslemOLD.n | β’ π β β |
resslemOLD.b | β’ 1 < π |
Ref | Expression |
---|---|
resslemOLD | β’ (π΄ β π β πΆ = (πΈβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resslemOLD.e | . 2 β’ πΆ = (πΈβπ) | |
2 | resslemOLD.r | . . . . . . 7 β’ π = (π βΎs π΄) | |
3 | eqid 2733 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
4 | 2, 3 | ressid2 17177 | . . . . . 6 β’ (((Baseβπ) β π΄ β§ π β V β§ π΄ β π) β π = π) |
5 | 4 | fveq2d 6896 | . . . . 5 β’ (((Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
6 | 5 | 3expib 1123 | . . . 4 β’ ((Baseβπ) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ))) |
7 | 2, 3 | ressval2 17178 | . . . . . . 7 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β π = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
8 | 7 | fveq2d 6896 | . . . . . 6 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
9 | resslemOLD.f | . . . . . . . 8 β’ πΈ = Slot π | |
10 | resslemOLD.n | . . . . . . . 8 β’ π β β | |
11 | 9, 10 | ndxid 17130 | . . . . . . 7 β’ πΈ = Slot (πΈβndx) |
12 | 9, 10 | ndxarg 17129 | . . . . . . . . 9 β’ (πΈβndx) = π |
13 | 1re 11214 | . . . . . . . . . 10 β’ 1 β β | |
14 | resslemOLD.b | . . . . . . . . . 10 β’ 1 < π | |
15 | 13, 14 | gtneii 11326 | . . . . . . . . 9 β’ π β 1 |
16 | 12, 15 | eqnetri 3012 | . . . . . . . 8 β’ (πΈβndx) β 1 |
17 | basendx 17153 | . . . . . . . 8 β’ (Baseβndx) = 1 | |
18 | 16, 17 | neeqtrri 3015 | . . . . . . 7 β’ (πΈβndx) β (Baseβndx) |
19 | 11, 18 | setsnid 17142 | . . . . . 6 β’ (πΈβπ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
20 | 8, 19 | eqtr4di 2791 | . . . . 5 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
21 | 20 | 3expib 1123 | . . . 4 β’ (Β¬ (Baseβπ) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ))) |
22 | 6, 21 | pm2.61i 182 | . . 3 β’ ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
23 | reldmress 17175 | . . . . . . . . 9 β’ Rel dom βΎs | |
24 | 23 | ovprc1 7448 | . . . . . . . 8 β’ (Β¬ π β V β (π βΎs π΄) = β ) |
25 | 2, 24 | eqtrid 2785 | . . . . . . 7 β’ (Β¬ π β V β π = β ) |
26 | 25 | fveq2d 6896 | . . . . . 6 β’ (Β¬ π β V β (πΈβπ ) = (πΈββ )) |
27 | 9 | str0 17122 | . . . . . 6 β’ β = (πΈββ ) |
28 | 26, 27 | eqtr4di 2791 | . . . . 5 β’ (Β¬ π β V β (πΈβπ ) = β ) |
29 | fvprc 6884 | . . . . 5 β’ (Β¬ π β V β (πΈβπ) = β ) | |
30 | 28, 29 | eqtr4d 2776 | . . . 4 β’ (Β¬ π β V β (πΈβπ ) = (πΈβπ)) |
31 | 30 | adantr 482 | . . 3 β’ ((Β¬ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
32 | 22, 31 | pm2.61ian 811 | . 2 β’ (π΄ β π β (πΈβπ ) = (πΈβπ)) |
33 | 1, 32 | eqtr4id 2792 | 1 β’ (π΄ β π β πΆ = (πΈβπ )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 Vcvv 3475 β© cin 3948 β wss 3949 β c0 4323 β¨cop 4635 class class class wbr 5149 βcfv 6544 (class class class)co 7409 1c1 11111 < clt 11248 βcn 12212 sSet csts 17096 Slot cslot 17114 ndxcnx 17126 Basecbs 17144 βΎs cress 17173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-mulcl 11172 ax-mulrcl 11173 ax-i2m1 11178 ax-1ne0 11179 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-nn 12213 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |