MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resslemOLD Structured version   Visualization version   GIF version

Theorem resslemOLD 16794
Description: Obsolete version of resseqnbas 16793 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
resslemOLD.r 𝑅 = (𝑊s 𝐴)
resslemOLD.e 𝐶 = (𝐸𝑊)
resslemOLD.f 𝐸 = Slot 𝑁
resslemOLD.n 𝑁 ∈ ℕ
resslemOLD.b 1 < 𝑁
Assertion
Ref Expression
resslemOLD (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resslemOLD
StepHypRef Expression
1 resslemOLD.e . 2 𝐶 = (𝐸𝑊)
2 resslemOLD.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
3 eqid 2737 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
42, 3ressid2 16788 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
54fveq2d 6721 . . . . 5 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
653expib 1124 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
72, 3ressval2 16789 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 6721 . . . . . 6 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 resslemOLD.f . . . . . . . 8 𝐸 = Slot 𝑁
10 resslemOLD.n . . . . . . . 8 𝑁 ∈ ℕ
119, 10ndxid 16748 . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
129, 10ndxarg 16747 . . . . . . . . 9 (𝐸‘ndx) = 𝑁
13 1re 10833 . . . . . . . . . 10 1 ∈ ℝ
14 resslemOLD.b . . . . . . . . . 10 1 < 𝑁
1513, 14gtneii 10944 . . . . . . . . 9 𝑁 ≠ 1
1612, 15eqnetri 3011 . . . . . . . 8 (𝐸‘ndx) ≠ 1
17 basendx 16769 . . . . . . . 8 (Base‘ndx) = 1
1816, 17neeqtrri 3014 . . . . . . 7 (𝐸‘ndx) ≠ (Base‘ndx)
1911, 18setsnid 16759 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
208, 19eqtr4di 2796 . . . . 5 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
21203expib 1124 . . . 4 (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
226, 21pm2.61i 185 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
23 reldmress 16786 . . . . . . . . 9 Rel dom ↾s
2423ovprc1 7252 . . . . . . . 8 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
252, 24syl5eq 2790 . . . . . . 7 𝑊 ∈ V → 𝑅 = ∅)
2625fveq2d 6721 . . . . . 6 𝑊 ∈ V → (𝐸𝑅) = (𝐸‘∅))
279str0 16742 . . . . . 6 ∅ = (𝐸‘∅)
2826, 27eqtr4di 2796 . . . . 5 𝑊 ∈ V → (𝐸𝑅) = ∅)
29 fvprc 6709 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = ∅)
3028, 29eqtr4d 2780 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
3130adantr 484 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
3222, 31pm2.61ian 812 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
331, 32eqtr4id 2797 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3408  cin 3865  wss 3866  c0 4237  cop 4547   class class class wbr 5053  cfv 6380  (class class class)co 7213  1c1 10730   < clt 10867  cn 11830   sSet csts 16716  Slot cslot 16734  ndxcnx 16744  Basecbs 16760  s cress 16784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-mulcl 10791  ax-mulrcl 10792  ax-i2m1 10797  ax-1ne0 10798  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-nn 11831  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator