MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resslemOLD Structured version   Visualization version   GIF version

Theorem resslemOLD 17301
Description: Obsolete version of resseqnbas 17300 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
resslemOLD.r 𝑅 = (𝑊s 𝐴)
resslemOLD.e 𝐶 = (𝐸𝑊)
resslemOLD.f 𝐸 = Slot 𝑁
resslemOLD.n 𝑁 ∈ ℕ
resslemOLD.b 1 < 𝑁
Assertion
Ref Expression
resslemOLD (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resslemOLD
StepHypRef Expression
1 resslemOLD.e . 2 𝐶 = (𝐸𝑊)
2 resslemOLD.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
3 eqid 2740 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
42, 3ressid2 17291 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
54fveq2d 6924 . . . . 5 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
653expib 1122 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
72, 3ressval2 17292 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 6924 . . . . . 6 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 resslemOLD.f . . . . . . . 8 𝐸 = Slot 𝑁
10 resslemOLD.n . . . . . . . 8 𝑁 ∈ ℕ
119, 10ndxid 17244 . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
129, 10ndxarg 17243 . . . . . . . . 9 (𝐸‘ndx) = 𝑁
13 1re 11290 . . . . . . . . . 10 1 ∈ ℝ
14 resslemOLD.b . . . . . . . . . 10 1 < 𝑁
1513, 14gtneii 11402 . . . . . . . . 9 𝑁 ≠ 1
1612, 15eqnetri 3017 . . . . . . . 8 (𝐸‘ndx) ≠ 1
17 basendx 17267 . . . . . . . 8 (Base‘ndx) = 1
1816, 17neeqtrri 3020 . . . . . . 7 (𝐸‘ndx) ≠ (Base‘ndx)
1911, 18setsnid 17256 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
208, 19eqtr4di 2798 . . . . 5 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
21203expib 1122 . . . 4 (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
226, 21pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
23 reldmress 17289 . . . . . . . . 9 Rel dom ↾s
2423ovprc1 7487 . . . . . . . 8 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
252, 24eqtrid 2792 . . . . . . 7 𝑊 ∈ V → 𝑅 = ∅)
2625fveq2d 6924 . . . . . 6 𝑊 ∈ V → (𝐸𝑅) = (𝐸‘∅))
279str0 17236 . . . . . 6 ∅ = (𝐸‘∅)
2826, 27eqtr4di 2798 . . . . 5 𝑊 ∈ V → (𝐸𝑅) = ∅)
29 fvprc 6912 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = ∅)
3028, 29eqtr4d 2783 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
3130adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
3222, 31pm2.61ian 811 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
331, 32eqtr4id 2799 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  wss 3976  c0 4352  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448  1c1 11185   < clt 11324  cn 12293   sSet csts 17210  Slot cslot 17228  ndxcnx 17240  Basecbs 17258  s cress 17287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator