| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotslnbpsd | Structured version Visualization version GIF version | ||
| Description: The slots Base, +g, ·𝑠 and dist are different from the slot LineG. Formerly part of ttglem 28856 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| slotslnbpsd | ⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lngndx 28418 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
| 2 | 1re 11150 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 3 | 1nn 12173 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 4 | 7nn0 12440 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 5 | 1nn0 12434 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 6 | 1lt10 12764 | . . . . . . 7 ⊢ 1 < ;10 | |
| 7 | 3, 4, 5, 6 | declti 12663 | . . . . . 6 ⊢ 1 < ;17 |
| 8 | 2, 7 | gtneii 11262 | . . . . 5 ⊢ ;17 ≠ 1 |
| 9 | basendx 17164 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
| 10 | 8, 9 | neeqtrri 2998 | . . . 4 ⊢ ;17 ≠ (Base‘ndx) |
| 11 | 1, 10 | eqnetri 2995 | . . 3 ⊢ (LineG‘ndx) ≠ (Base‘ndx) |
| 12 | 2re 12236 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 13 | 2nn0 12435 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 14 | 2lt10 12763 | . . . . . . 7 ⊢ 2 < ;10 | |
| 15 | 3, 4, 13, 14 | declti 12663 | . . . . . 6 ⊢ 2 < ;17 |
| 16 | 12, 15 | gtneii 11262 | . . . . 5 ⊢ ;17 ≠ 2 |
| 17 | plusgndx 17222 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 18 | 16, 17 | neeqtrri 2998 | . . . 4 ⊢ ;17 ≠ (+g‘ndx) |
| 19 | 1, 18 | eqnetri 2995 | . . 3 ⊢ (LineG‘ndx) ≠ (+g‘ndx) |
| 20 | 11, 19 | pm3.2i 470 | . 2 ⊢ ((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) |
| 21 | 6re 12252 | . . . . . 6 ⊢ 6 ∈ ℝ | |
| 22 | 6nn0 12439 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 23 | 6lt10 12759 | . . . . . . 7 ⊢ 6 < ;10 | |
| 24 | 3, 4, 22, 23 | declti 12663 | . . . . . 6 ⊢ 6 < ;17 |
| 25 | 21, 24 | gtneii 11262 | . . . . 5 ⊢ ;17 ≠ 6 |
| 26 | vscandx 17258 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 27 | 25, 26 | neeqtrri 2998 | . . . 4 ⊢ ;17 ≠ ( ·𝑠 ‘ndx) |
| 28 | 1, 27 | eqnetri 2995 | . . 3 ⊢ (LineG‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 29 | 2nn 12235 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 30 | 5, 29 | decnncl 12645 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
| 31 | 30 | nnrei 12171 | . . . . . 6 ⊢ ;12 ∈ ℝ |
| 32 | 7nn 12254 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
| 33 | 2lt7 12347 | . . . . . . 7 ⊢ 2 < 7 | |
| 34 | 5, 13, 32, 33 | declt 12653 | . . . . . 6 ⊢ ;12 < ;17 |
| 35 | 31, 34 | gtneii 11262 | . . . . 5 ⊢ ;17 ≠ ;12 |
| 36 | dsndx 17324 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 37 | 35, 36 | neeqtrri 2998 | . . . 4 ⊢ ;17 ≠ (dist‘ndx) |
| 38 | 1, 37 | eqnetri 2995 | . . 3 ⊢ (LineG‘ndx) ≠ (dist‘ndx) |
| 39 | 28, 38 | pm3.2i 470 | . 2 ⊢ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx)) |
| 40 | 20, 39 | pm3.2i 470 | 1 ⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ≠ wne 2925 ‘cfv 6499 1c1 11045 2c2 12217 6c6 12221 7c7 12222 ;cdc 12625 ndxcnx 17139 Basecbs 17155 +gcplusg 17196 ·𝑠 cvsca 17200 distcds 17205 LineGclng 28414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-vsca 17213 df-ds 17218 df-lng 28416 |
| This theorem is referenced by: ttgbas 28857 ttgplusg 28858 ttgvsca 28860 ttgds 28861 |
| Copyright terms: Public domain | W3C validator |