Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slotslnbpsd | Structured version Visualization version GIF version |
Description: The slots Base, +g, ·𝑠 and dist are different from the slot LineG. Formerly part of ttglem 27468 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotslnbpsd | ⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lngndx 27029 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
2 | 1re 11068 | . . . . . 6 ⊢ 1 ∈ ℝ | |
3 | 1nn 12077 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 7nn0 12348 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
5 | 1nn0 12342 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12669 | . . . . . . 7 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12568 | . . . . . 6 ⊢ 1 < ;17 |
8 | 2, 7 | gtneii 11180 | . . . . 5 ⊢ ;17 ≠ 1 |
9 | basendx 17010 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | 8, 9 | neeqtrri 3014 | . . . 4 ⊢ ;17 ≠ (Base‘ndx) |
11 | 1, 10 | eqnetri 3011 | . . 3 ⊢ (LineG‘ndx) ≠ (Base‘ndx) |
12 | 2re 12140 | . . . . . 6 ⊢ 2 ∈ ℝ | |
13 | 2nn0 12343 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 12668 | . . . . . . 7 ⊢ 2 < ;10 | |
15 | 3, 4, 13, 14 | declti 12568 | . . . . . 6 ⊢ 2 < ;17 |
16 | 12, 15 | gtneii 11180 | . . . . 5 ⊢ ;17 ≠ 2 |
17 | plusgndx 17077 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
18 | 16, 17 | neeqtrri 3014 | . . . 4 ⊢ ;17 ≠ (+g‘ndx) |
19 | 1, 18 | eqnetri 3011 | . . 3 ⊢ (LineG‘ndx) ≠ (+g‘ndx) |
20 | 11, 19 | pm3.2i 471 | . 2 ⊢ ((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) |
21 | 6re 12156 | . . . . . 6 ⊢ 6 ∈ ℝ | |
22 | 6nn0 12347 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
23 | 6lt10 12664 | . . . . . . 7 ⊢ 6 < ;10 | |
24 | 3, 4, 22, 23 | declti 12568 | . . . . . 6 ⊢ 6 < ;17 |
25 | 21, 24 | gtneii 11180 | . . . . 5 ⊢ ;17 ≠ 6 |
26 | vscandx 17118 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
27 | 25, 26 | neeqtrri 3014 | . . . 4 ⊢ ;17 ≠ ( ·𝑠 ‘ndx) |
28 | 1, 27 | eqnetri 3011 | . . 3 ⊢ (LineG‘ndx) ≠ ( ·𝑠 ‘ndx) |
29 | 2nn 12139 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
30 | 5, 29 | decnncl 12550 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
31 | 30 | nnrei 12075 | . . . . . 6 ⊢ ;12 ∈ ℝ |
32 | 7nn 12158 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
33 | 2lt7 12256 | . . . . . . 7 ⊢ 2 < 7 | |
34 | 5, 13, 32, 33 | declt 12558 | . . . . . 6 ⊢ ;12 < ;17 |
35 | 31, 34 | gtneii 11180 | . . . . 5 ⊢ ;17 ≠ ;12 |
36 | dsndx 17184 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
37 | 35, 36 | neeqtrri 3014 | . . . 4 ⊢ ;17 ≠ (dist‘ndx) |
38 | 1, 37 | eqnetri 3011 | . . 3 ⊢ (LineG‘ndx) ≠ (dist‘ndx) |
39 | 28, 38 | pm3.2i 471 | . 2 ⊢ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx)) |
40 | 20, 39 | pm3.2i 471 | 1 ⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ≠ wne 2940 ‘cfv 6473 1c1 10965 2c2 12121 6c6 12125 7c7 12126 ;cdc 12530 ndxcnx 16983 Basecbs 17001 +gcplusg 17051 ·𝑠 cvsca 17055 distcds 17060 LineGclng 27025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-slot 16972 df-ndx 16984 df-base 17002 df-plusg 17064 df-vsca 17068 df-ds 17073 df-lng 27027 |
This theorem is referenced by: ttgbas 27470 ttgplusg 27472 ttgvsca 27475 ttgds 27477 |
Copyright terms: Public domain | W3C validator |