Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slotslnbpsd | Structured version Visualization version GIF version |
Description: The slots Base, +g, ·𝑠 and dist are different from the slot LineG. Formerly part of ttglem 27238 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotslnbpsd | ⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lngndx 26799 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
2 | 1re 10975 | . . . . . 6 ⊢ 1 ∈ ℝ | |
3 | 1nn 11984 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 7nn0 12255 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
5 | 1nn0 12249 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12576 | . . . . . . 7 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12475 | . . . . . 6 ⊢ 1 < ;17 |
8 | 2, 7 | gtneii 11087 | . . . . 5 ⊢ ;17 ≠ 1 |
9 | basendx 16921 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | 8, 9 | neeqtrri 3017 | . . . 4 ⊢ ;17 ≠ (Base‘ndx) |
11 | 1, 10 | eqnetri 3014 | . . 3 ⊢ (LineG‘ndx) ≠ (Base‘ndx) |
12 | 2re 12047 | . . . . . 6 ⊢ 2 ∈ ℝ | |
13 | 2nn0 12250 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 12575 | . . . . . . 7 ⊢ 2 < ;10 | |
15 | 3, 4, 13, 14 | declti 12475 | . . . . . 6 ⊢ 2 < ;17 |
16 | 12, 15 | gtneii 11087 | . . . . 5 ⊢ ;17 ≠ 2 |
17 | plusgndx 16988 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
18 | 16, 17 | neeqtrri 3017 | . . . 4 ⊢ ;17 ≠ (+g‘ndx) |
19 | 1, 18 | eqnetri 3014 | . . 3 ⊢ (LineG‘ndx) ≠ (+g‘ndx) |
20 | 11, 19 | pm3.2i 471 | . 2 ⊢ ((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) |
21 | 6re 12063 | . . . . . 6 ⊢ 6 ∈ ℝ | |
22 | 6nn0 12254 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
23 | 6lt10 12571 | . . . . . . 7 ⊢ 6 < ;10 | |
24 | 3, 4, 22, 23 | declti 12475 | . . . . . 6 ⊢ 6 < ;17 |
25 | 21, 24 | gtneii 11087 | . . . . 5 ⊢ ;17 ≠ 6 |
26 | vscandx 17029 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
27 | 25, 26 | neeqtrri 3017 | . . . 4 ⊢ ;17 ≠ ( ·𝑠 ‘ndx) |
28 | 1, 27 | eqnetri 3014 | . . 3 ⊢ (LineG‘ndx) ≠ ( ·𝑠 ‘ndx) |
29 | 2nn 12046 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
30 | 5, 29 | decnncl 12457 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
31 | 30 | nnrei 11982 | . . . . . 6 ⊢ ;12 ∈ ℝ |
32 | 7nn 12065 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
33 | 2lt7 12163 | . . . . . . 7 ⊢ 2 < 7 | |
34 | 5, 13, 32, 33 | declt 12465 | . . . . . 6 ⊢ ;12 < ;17 |
35 | 31, 34 | gtneii 11087 | . . . . 5 ⊢ ;17 ≠ ;12 |
36 | dsndx 17095 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
37 | 35, 36 | neeqtrri 3017 | . . . 4 ⊢ ;17 ≠ (dist‘ndx) |
38 | 1, 37 | eqnetri 3014 | . . 3 ⊢ (LineG‘ndx) ≠ (dist‘ndx) |
39 | 28, 38 | pm3.2i 471 | . 2 ⊢ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx)) |
40 | 20, 39 | pm3.2i 471 | 1 ⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ≠ wne 2943 ‘cfv 6433 1c1 10872 2c2 12028 6c6 12032 7c7 12033 ;cdc 12437 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 ·𝑠 cvsca 16966 distcds 16971 LineGclng 26795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-vsca 16979 df-ds 16984 df-lng 26797 |
This theorem is referenced by: ttgbas 27240 ttgplusg 27242 ttgvsca 27245 ttgds 27247 |
Copyright terms: Public domain | W3C validator |