![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsinbpsd | Structured version Visualization version GIF version |
Description: The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28903 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsinbpsd | ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itvndx 28463 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
2 | 1re 11290 | . . . . . 6 ⊢ 1 ∈ ℝ | |
3 | 1nn 12304 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 6nn0 12574 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
5 | 1nn0 12569 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12897 | . . . . . . 7 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12796 | . . . . . 6 ⊢ 1 < ;16 |
8 | 2, 7 | gtneii 11402 | . . . . 5 ⊢ ;16 ≠ 1 |
9 | basendx 17267 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | 8, 9 | neeqtrri 3020 | . . . 4 ⊢ ;16 ≠ (Base‘ndx) |
11 | 1, 10 | eqnetri 3017 | . . 3 ⊢ (Itv‘ndx) ≠ (Base‘ndx) |
12 | 2re 12367 | . . . . . 6 ⊢ 2 ∈ ℝ | |
13 | 2nn0 12570 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 12896 | . . . . . . 7 ⊢ 2 < ;10 | |
15 | 3, 4, 13, 14 | declti 12796 | . . . . . 6 ⊢ 2 < ;16 |
16 | 12, 15 | gtneii 11402 | . . . . 5 ⊢ ;16 ≠ 2 |
17 | plusgndx 17337 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
18 | 16, 17 | neeqtrri 3020 | . . . 4 ⊢ ;16 ≠ (+g‘ndx) |
19 | 1, 18 | eqnetri 3017 | . . 3 ⊢ (Itv‘ndx) ≠ (+g‘ndx) |
20 | 11, 19 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) |
21 | 6re 12383 | . . . . . 6 ⊢ 6 ∈ ℝ | |
22 | 6lt10 12892 | . . . . . . 7 ⊢ 6 < ;10 | |
23 | 3, 4, 4, 22 | declti 12796 | . . . . . 6 ⊢ 6 < ;16 |
24 | 21, 23 | gtneii 11402 | . . . . 5 ⊢ ;16 ≠ 6 |
25 | vscandx 17378 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
26 | 24, 25 | neeqtrri 3020 | . . . 4 ⊢ ;16 ≠ ( ·𝑠 ‘ndx) |
27 | 1, 26 | eqnetri 3017 | . . 3 ⊢ (Itv‘ndx) ≠ ( ·𝑠 ‘ndx) |
28 | 2nn 12366 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
29 | 5, 28 | decnncl 12778 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
30 | 29 | nnrei 12302 | . . . . . 6 ⊢ ;12 ∈ ℝ |
31 | 6nn 12382 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
32 | 2lt6 12477 | . . . . . . 7 ⊢ 2 < 6 | |
33 | 5, 13, 31, 32 | declt 12786 | . . . . . 6 ⊢ ;12 < ;16 |
34 | 30, 33 | gtneii 11402 | . . . . 5 ⊢ ;16 ≠ ;12 |
35 | dsndx 17444 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
36 | 34, 35 | neeqtrri 3020 | . . . 4 ⊢ ;16 ≠ (dist‘ndx) |
37 | 1, 36 | eqnetri 3017 | . . 3 ⊢ (Itv‘ndx) ≠ (dist‘ndx) |
38 | 27, 37 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx)) |
39 | 20, 38 | pm3.2i 470 | 1 ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ≠ wne 2946 ‘cfv 6573 1c1 11185 2c2 12348 6c6 12352 ;cdc 12758 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 ·𝑠 cvsca 17315 distcds 17320 Itvcitv 28459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-vsca 17328 df-ds 17333 df-itv 28461 |
This theorem is referenced by: ttgbas 28905 ttgplusg 28907 ttgvsca 28910 ttgds 28912 |
Copyright terms: Public domain | W3C validator |