| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsinbpsd | Structured version Visualization version GIF version | ||
| Description: The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28864 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| slotsinbpsd | ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itvndx 28425 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
| 2 | 1re 11122 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 3 | 1nn 12146 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 4 | 6nn0 12412 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 5 | 1nn0 12407 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 6 | 1lt10 12737 | . . . . . . 7 ⊢ 1 < ;10 | |
| 7 | 3, 4, 5, 6 | declti 12636 | . . . . . 6 ⊢ 1 < ;16 |
| 8 | 2, 7 | gtneii 11235 | . . . . 5 ⊢ ;16 ≠ 1 |
| 9 | basendx 17139 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
| 10 | 8, 9 | neeqtrri 3003 | . . . 4 ⊢ ;16 ≠ (Base‘ndx) |
| 11 | 1, 10 | eqnetri 3000 | . . 3 ⊢ (Itv‘ndx) ≠ (Base‘ndx) |
| 12 | 2re 12209 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 13 | 2nn0 12408 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 14 | 2lt10 12736 | . . . . . . 7 ⊢ 2 < ;10 | |
| 15 | 3, 4, 13, 14 | declti 12636 | . . . . . 6 ⊢ 2 < ;16 |
| 16 | 12, 15 | gtneii 11235 | . . . . 5 ⊢ ;16 ≠ 2 |
| 17 | plusgndx 17197 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 18 | 16, 17 | neeqtrri 3003 | . . . 4 ⊢ ;16 ≠ (+g‘ndx) |
| 19 | 1, 18 | eqnetri 3000 | . . 3 ⊢ (Itv‘ndx) ≠ (+g‘ndx) |
| 20 | 11, 19 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) |
| 21 | 6re 12225 | . . . . . 6 ⊢ 6 ∈ ℝ | |
| 22 | 6lt10 12732 | . . . . . . 7 ⊢ 6 < ;10 | |
| 23 | 3, 4, 4, 22 | declti 12636 | . . . . . 6 ⊢ 6 < ;16 |
| 24 | 21, 23 | gtneii 11235 | . . . . 5 ⊢ ;16 ≠ 6 |
| 25 | vscandx 17233 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 26 | 24, 25 | neeqtrri 3003 | . . . 4 ⊢ ;16 ≠ ( ·𝑠 ‘ndx) |
| 27 | 1, 26 | eqnetri 3000 | . . 3 ⊢ (Itv‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 28 | 2nn 12208 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 29 | 5, 28 | decnncl 12618 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
| 30 | 29 | nnrei 12144 | . . . . . 6 ⊢ ;12 ∈ ℝ |
| 31 | 6nn 12224 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 32 | 2lt6 12314 | . . . . . . 7 ⊢ 2 < 6 | |
| 33 | 5, 13, 31, 32 | declt 12626 | . . . . . 6 ⊢ ;12 < ;16 |
| 34 | 30, 33 | gtneii 11235 | . . . . 5 ⊢ ;16 ≠ ;12 |
| 35 | dsndx 17299 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 36 | 34, 35 | neeqtrri 3003 | . . . 4 ⊢ ;16 ≠ (dist‘ndx) |
| 37 | 1, 36 | eqnetri 3000 | . . 3 ⊢ (Itv‘ndx) ≠ (dist‘ndx) |
| 38 | 27, 37 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx)) |
| 39 | 20, 38 | pm3.2i 470 | 1 ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ≠ wne 2930 ‘cfv 6489 1c1 11017 2c2 12190 6c6 12194 ;cdc 12598 ndxcnx 17114 Basecbs 17130 +gcplusg 17171 ·𝑠 cvsca 17175 distcds 17180 Itvcitv 28421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-slot 17103 df-ndx 17115 df-base 17131 df-plusg 17184 df-vsca 17188 df-ds 17193 df-itv 28423 |
| This theorem is referenced by: ttgbas 28865 ttgplusg 28866 ttgvsca 28868 ttgds 28869 |
| Copyright terms: Public domain | W3C validator |