![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsinbpsd | Structured version Visualization version GIF version |
Description: The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28801 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsinbpsd | ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itvndx 28361 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
2 | 1re 11255 | . . . . . 6 ⊢ 1 ∈ ℝ | |
3 | 1nn 12269 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 6nn0 12539 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
5 | 1nn0 12534 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12862 | . . . . . . 7 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12761 | . . . . . 6 ⊢ 1 < ;16 |
8 | 2, 7 | gtneii 11367 | . . . . 5 ⊢ ;16 ≠ 1 |
9 | basendx 17217 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | 8, 9 | neeqtrri 3004 | . . . 4 ⊢ ;16 ≠ (Base‘ndx) |
11 | 1, 10 | eqnetri 3001 | . . 3 ⊢ (Itv‘ndx) ≠ (Base‘ndx) |
12 | 2re 12332 | . . . . . 6 ⊢ 2 ∈ ℝ | |
13 | 2nn0 12535 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 12861 | . . . . . . 7 ⊢ 2 < ;10 | |
15 | 3, 4, 13, 14 | declti 12761 | . . . . . 6 ⊢ 2 < ;16 |
16 | 12, 15 | gtneii 11367 | . . . . 5 ⊢ ;16 ≠ 2 |
17 | plusgndx 17287 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
18 | 16, 17 | neeqtrri 3004 | . . . 4 ⊢ ;16 ≠ (+g‘ndx) |
19 | 1, 18 | eqnetri 3001 | . . 3 ⊢ (Itv‘ndx) ≠ (+g‘ndx) |
20 | 11, 19 | pm3.2i 469 | . 2 ⊢ ((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) |
21 | 6re 12348 | . . . . . 6 ⊢ 6 ∈ ℝ | |
22 | 6lt10 12857 | . . . . . . 7 ⊢ 6 < ;10 | |
23 | 3, 4, 4, 22 | declti 12761 | . . . . . 6 ⊢ 6 < ;16 |
24 | 21, 23 | gtneii 11367 | . . . . 5 ⊢ ;16 ≠ 6 |
25 | vscandx 17328 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
26 | 24, 25 | neeqtrri 3004 | . . . 4 ⊢ ;16 ≠ ( ·𝑠 ‘ndx) |
27 | 1, 26 | eqnetri 3001 | . . 3 ⊢ (Itv‘ndx) ≠ ( ·𝑠 ‘ndx) |
28 | 2nn 12331 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
29 | 5, 28 | decnncl 12743 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
30 | 29 | nnrei 12267 | . . . . . 6 ⊢ ;12 ∈ ℝ |
31 | 6nn 12347 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
32 | 2lt6 12442 | . . . . . . 7 ⊢ 2 < 6 | |
33 | 5, 13, 31, 32 | declt 12751 | . . . . . 6 ⊢ ;12 < ;16 |
34 | 30, 33 | gtneii 11367 | . . . . 5 ⊢ ;16 ≠ ;12 |
35 | dsndx 17394 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
36 | 34, 35 | neeqtrri 3004 | . . . 4 ⊢ ;16 ≠ (dist‘ndx) |
37 | 1, 36 | eqnetri 3001 | . . 3 ⊢ (Itv‘ndx) ≠ (dist‘ndx) |
38 | 27, 37 | pm3.2i 469 | . 2 ⊢ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx)) |
39 | 20, 38 | pm3.2i 469 | 1 ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ≠ wne 2930 ‘cfv 6546 1c1 11150 2c2 12313 6c6 12317 ;cdc 12723 ndxcnx 17190 Basecbs 17208 +gcplusg 17261 ·𝑠 cvsca 17265 distcds 17270 Itvcitv 28357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-slot 17179 df-ndx 17191 df-base 17209 df-plusg 17274 df-vsca 17278 df-ds 17283 df-itv 28359 |
This theorem is referenced by: ttgbas 28803 ttgplusg 28805 ttgvsca 28808 ttgds 28810 |
Copyright terms: Public domain | W3C validator |