Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slotsinbpsd | Structured version Visualization version GIF version |
Description: The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 27116 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsinbpsd | ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itvndx 26678 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
2 | 1re 10881 | . . . . . 6 ⊢ 1 ∈ ℝ | |
3 | 1nn 11889 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 6nn0 12159 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
5 | 1nn0 12154 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12480 | . . . . . . 7 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12379 | . . . . . 6 ⊢ 1 < ;16 |
8 | 2, 7 | gtneii 10992 | . . . . 5 ⊢ ;16 ≠ 1 |
9 | basendx 16824 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | 8, 9 | neeqtrri 3017 | . . . 4 ⊢ ;16 ≠ (Base‘ndx) |
11 | 1, 10 | eqnetri 3014 | . . 3 ⊢ (Itv‘ndx) ≠ (Base‘ndx) |
12 | 2re 11952 | . . . . . 6 ⊢ 2 ∈ ℝ | |
13 | 2nn0 12155 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 12479 | . . . . . . 7 ⊢ 2 < ;10 | |
15 | 3, 4, 13, 14 | declti 12379 | . . . . . 6 ⊢ 2 < ;16 |
16 | 12, 15 | gtneii 10992 | . . . . 5 ⊢ ;16 ≠ 2 |
17 | plusgndx 16889 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
18 | 16, 17 | neeqtrri 3017 | . . . 4 ⊢ ;16 ≠ (+g‘ndx) |
19 | 1, 18 | eqnetri 3014 | . . 3 ⊢ (Itv‘ndx) ≠ (+g‘ndx) |
20 | 11, 19 | pm3.2i 474 | . 2 ⊢ ((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) |
21 | 6re 11968 | . . . . . 6 ⊢ 6 ∈ ℝ | |
22 | 6lt10 12475 | . . . . . . 7 ⊢ 6 < ;10 | |
23 | 3, 4, 4, 22 | declti 12379 | . . . . . 6 ⊢ 6 < ;16 |
24 | 21, 23 | gtneii 10992 | . . . . 5 ⊢ ;16 ≠ 6 |
25 | vscandx 16930 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
26 | 24, 25 | neeqtrri 3017 | . . . 4 ⊢ ;16 ≠ ( ·𝑠 ‘ndx) |
27 | 1, 26 | eqnetri 3014 | . . 3 ⊢ (Itv‘ndx) ≠ ( ·𝑠 ‘ndx) |
28 | 2nn 11951 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
29 | 5, 28 | decnncl 12361 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
30 | 29 | nnrei 11887 | . . . . . 6 ⊢ ;12 ∈ ℝ |
31 | 6nn 11967 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
32 | 2lt6 12062 | . . . . . . 7 ⊢ 2 < 6 | |
33 | 5, 13, 31, 32 | declt 12369 | . . . . . 6 ⊢ ;12 < ;16 |
34 | 30, 33 | gtneii 10992 | . . . . 5 ⊢ ;16 ≠ ;12 |
35 | dsndx 16991 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
36 | 34, 35 | neeqtrri 3017 | . . . 4 ⊢ ;16 ≠ (dist‘ndx) |
37 | 1, 36 | eqnetri 3014 | . . 3 ⊢ (Itv‘ndx) ≠ (dist‘ndx) |
38 | 27, 37 | pm3.2i 474 | . 2 ⊢ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx)) |
39 | 20, 38 | pm3.2i 474 | 1 ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ≠ wne 2943 ‘cfv 6415 1c1 10778 2c2 11933 6c6 11937 ;cdc 12341 ndxcnx 16797 Basecbs 16815 +gcplusg 16863 ·𝑠 cvsca 16867 distcds 16872 Itvcitv 26674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-slot 16786 df-ndx 16798 df-base 16816 df-plusg 16876 df-vsca 16880 df-ds 16885 df-itv 26676 |
This theorem is referenced by: ttgbas 27118 ttgplusg 27120 ttgvsca 27123 ttgds 27125 |
Copyright terms: Public domain | W3C validator |