| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsinbpsd | Structured version Visualization version GIF version | ||
| Description: The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28810 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| slotsinbpsd | ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itvndx 28371 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
| 2 | 1re 11181 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 3 | 1nn 12204 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 4 | 6nn0 12470 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 5 | 1nn0 12465 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 6 | 1lt10 12795 | . . . . . . 7 ⊢ 1 < ;10 | |
| 7 | 3, 4, 5, 6 | declti 12694 | . . . . . 6 ⊢ 1 < ;16 |
| 8 | 2, 7 | gtneii 11293 | . . . . 5 ⊢ ;16 ≠ 1 |
| 9 | basendx 17195 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
| 10 | 8, 9 | neeqtrri 2999 | . . . 4 ⊢ ;16 ≠ (Base‘ndx) |
| 11 | 1, 10 | eqnetri 2996 | . . 3 ⊢ (Itv‘ndx) ≠ (Base‘ndx) |
| 12 | 2re 12267 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 13 | 2nn0 12466 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 14 | 2lt10 12794 | . . . . . . 7 ⊢ 2 < ;10 | |
| 15 | 3, 4, 13, 14 | declti 12694 | . . . . . 6 ⊢ 2 < ;16 |
| 16 | 12, 15 | gtneii 11293 | . . . . 5 ⊢ ;16 ≠ 2 |
| 17 | plusgndx 17253 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 18 | 16, 17 | neeqtrri 2999 | . . . 4 ⊢ ;16 ≠ (+g‘ndx) |
| 19 | 1, 18 | eqnetri 2996 | . . 3 ⊢ (Itv‘ndx) ≠ (+g‘ndx) |
| 20 | 11, 19 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) |
| 21 | 6re 12283 | . . . . . 6 ⊢ 6 ∈ ℝ | |
| 22 | 6lt10 12790 | . . . . . . 7 ⊢ 6 < ;10 | |
| 23 | 3, 4, 4, 22 | declti 12694 | . . . . . 6 ⊢ 6 < ;16 |
| 24 | 21, 23 | gtneii 11293 | . . . . 5 ⊢ ;16 ≠ 6 |
| 25 | vscandx 17289 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 26 | 24, 25 | neeqtrri 2999 | . . . 4 ⊢ ;16 ≠ ( ·𝑠 ‘ndx) |
| 27 | 1, 26 | eqnetri 2996 | . . 3 ⊢ (Itv‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 28 | 2nn 12266 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 29 | 5, 28 | decnncl 12676 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
| 30 | 29 | nnrei 12202 | . . . . . 6 ⊢ ;12 ∈ ℝ |
| 31 | 6nn 12282 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 32 | 2lt6 12372 | . . . . . . 7 ⊢ 2 < 6 | |
| 33 | 5, 13, 31, 32 | declt 12684 | . . . . . 6 ⊢ ;12 < ;16 |
| 34 | 30, 33 | gtneii 11293 | . . . . 5 ⊢ ;16 ≠ ;12 |
| 35 | dsndx 17355 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 36 | 34, 35 | neeqtrri 2999 | . . . 4 ⊢ ;16 ≠ (dist‘ndx) |
| 37 | 1, 36 | eqnetri 2996 | . . 3 ⊢ (Itv‘ndx) ≠ (dist‘ndx) |
| 38 | 27, 37 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx)) |
| 39 | 20, 38 | pm3.2i 470 | 1 ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ≠ wne 2926 ‘cfv 6514 1c1 11076 2c2 12248 6c6 12252 ;cdc 12656 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 ·𝑠 cvsca 17231 distcds 17236 Itvcitv 28367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-vsca 17244 df-ds 17249 df-itv 28369 |
| This theorem is referenced by: ttgbas 28811 ttgplusg 28812 ttgvsca 28814 ttgds 28815 |
| Copyright terms: Public domain | W3C validator |