| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsinbpsd | Structured version Visualization version GIF version | ||
| Description: The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28803 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| slotsinbpsd | ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itvndx 28364 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
| 2 | 1re 11174 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 3 | 1nn 12197 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 4 | 6nn0 12463 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 5 | 1nn0 12458 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 6 | 1lt10 12788 | . . . . . . 7 ⊢ 1 < ;10 | |
| 7 | 3, 4, 5, 6 | declti 12687 | . . . . . 6 ⊢ 1 < ;16 |
| 8 | 2, 7 | gtneii 11286 | . . . . 5 ⊢ ;16 ≠ 1 |
| 9 | basendx 17188 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
| 10 | 8, 9 | neeqtrri 2998 | . . . 4 ⊢ ;16 ≠ (Base‘ndx) |
| 11 | 1, 10 | eqnetri 2995 | . . 3 ⊢ (Itv‘ndx) ≠ (Base‘ndx) |
| 12 | 2re 12260 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 13 | 2nn0 12459 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 14 | 2lt10 12787 | . . . . . . 7 ⊢ 2 < ;10 | |
| 15 | 3, 4, 13, 14 | declti 12687 | . . . . . 6 ⊢ 2 < ;16 |
| 16 | 12, 15 | gtneii 11286 | . . . . 5 ⊢ ;16 ≠ 2 |
| 17 | plusgndx 17246 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 18 | 16, 17 | neeqtrri 2998 | . . . 4 ⊢ ;16 ≠ (+g‘ndx) |
| 19 | 1, 18 | eqnetri 2995 | . . 3 ⊢ (Itv‘ndx) ≠ (+g‘ndx) |
| 20 | 11, 19 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) |
| 21 | 6re 12276 | . . . . . 6 ⊢ 6 ∈ ℝ | |
| 22 | 6lt10 12783 | . . . . . . 7 ⊢ 6 < ;10 | |
| 23 | 3, 4, 4, 22 | declti 12687 | . . . . . 6 ⊢ 6 < ;16 |
| 24 | 21, 23 | gtneii 11286 | . . . . 5 ⊢ ;16 ≠ 6 |
| 25 | vscandx 17282 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 26 | 24, 25 | neeqtrri 2998 | . . . 4 ⊢ ;16 ≠ ( ·𝑠 ‘ndx) |
| 27 | 1, 26 | eqnetri 2995 | . . 3 ⊢ (Itv‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 28 | 2nn 12259 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 29 | 5, 28 | decnncl 12669 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
| 30 | 29 | nnrei 12195 | . . . . . 6 ⊢ ;12 ∈ ℝ |
| 31 | 6nn 12275 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 32 | 2lt6 12365 | . . . . . . 7 ⊢ 2 < 6 | |
| 33 | 5, 13, 31, 32 | declt 12677 | . . . . . 6 ⊢ ;12 < ;16 |
| 34 | 30, 33 | gtneii 11286 | . . . . 5 ⊢ ;16 ≠ ;12 |
| 35 | dsndx 17348 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 36 | 34, 35 | neeqtrri 2998 | . . . 4 ⊢ ;16 ≠ (dist‘ndx) |
| 37 | 1, 36 | eqnetri 2995 | . . 3 ⊢ (Itv‘ndx) ≠ (dist‘ndx) |
| 38 | 27, 37 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx)) |
| 39 | 20, 38 | pm3.2i 470 | 1 ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ≠ wne 2925 ‘cfv 6511 1c1 11069 2c2 12241 6c6 12245 ;cdc 12649 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 ·𝑠 cvsca 17224 distcds 17229 Itvcitv 28360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-vsca 17237 df-ds 17242 df-itv 28362 |
| This theorem is referenced by: ttgbas 28804 ttgplusg 28805 ttgvsca 28807 ttgds 28808 |
| Copyright terms: Public domain | W3C validator |