![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsinbpsd | Structured version Visualization version GIF version |
Description: The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28128 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsinbpsd | ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itvndx 27688 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
2 | 1re 11214 | . . . . . 6 ⊢ 1 ∈ ℝ | |
3 | 1nn 12223 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 6nn0 12493 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
5 | 1nn0 12488 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12816 | . . . . . . 7 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12715 | . . . . . 6 ⊢ 1 < ;16 |
8 | 2, 7 | gtneii 11326 | . . . . 5 ⊢ ;16 ≠ 1 |
9 | basendx 17153 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | 8, 9 | neeqtrri 3015 | . . . 4 ⊢ ;16 ≠ (Base‘ndx) |
11 | 1, 10 | eqnetri 3012 | . . 3 ⊢ (Itv‘ndx) ≠ (Base‘ndx) |
12 | 2re 12286 | . . . . . 6 ⊢ 2 ∈ ℝ | |
13 | 2nn0 12489 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 12815 | . . . . . . 7 ⊢ 2 < ;10 | |
15 | 3, 4, 13, 14 | declti 12715 | . . . . . 6 ⊢ 2 < ;16 |
16 | 12, 15 | gtneii 11326 | . . . . 5 ⊢ ;16 ≠ 2 |
17 | plusgndx 17223 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
18 | 16, 17 | neeqtrri 3015 | . . . 4 ⊢ ;16 ≠ (+g‘ndx) |
19 | 1, 18 | eqnetri 3012 | . . 3 ⊢ (Itv‘ndx) ≠ (+g‘ndx) |
20 | 11, 19 | pm3.2i 472 | . 2 ⊢ ((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) |
21 | 6re 12302 | . . . . . 6 ⊢ 6 ∈ ℝ | |
22 | 6lt10 12811 | . . . . . . 7 ⊢ 6 < ;10 | |
23 | 3, 4, 4, 22 | declti 12715 | . . . . . 6 ⊢ 6 < ;16 |
24 | 21, 23 | gtneii 11326 | . . . . 5 ⊢ ;16 ≠ 6 |
25 | vscandx 17264 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
26 | 24, 25 | neeqtrri 3015 | . . . 4 ⊢ ;16 ≠ ( ·𝑠 ‘ndx) |
27 | 1, 26 | eqnetri 3012 | . . 3 ⊢ (Itv‘ndx) ≠ ( ·𝑠 ‘ndx) |
28 | 2nn 12285 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
29 | 5, 28 | decnncl 12697 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
30 | 29 | nnrei 12221 | . . . . . 6 ⊢ ;12 ∈ ℝ |
31 | 6nn 12301 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
32 | 2lt6 12396 | . . . . . . 7 ⊢ 2 < 6 | |
33 | 5, 13, 31, 32 | declt 12705 | . . . . . 6 ⊢ ;12 < ;16 |
34 | 30, 33 | gtneii 11326 | . . . . 5 ⊢ ;16 ≠ ;12 |
35 | dsndx 17330 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
36 | 34, 35 | neeqtrri 3015 | . . . 4 ⊢ ;16 ≠ (dist‘ndx) |
37 | 1, 36 | eqnetri 3012 | . . 3 ⊢ (Itv‘ndx) ≠ (dist‘ndx) |
38 | 27, 37 | pm3.2i 472 | . 2 ⊢ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx)) |
39 | 20, 38 | pm3.2i 472 | 1 ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ≠ wne 2941 ‘cfv 6544 1c1 11111 2c2 12267 6c6 12271 ;cdc 12677 ndxcnx 17126 Basecbs 17144 +gcplusg 17197 ·𝑠 cvsca 17201 distcds 17206 Itvcitv 27684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-vsca 17214 df-ds 17219 df-itv 27686 |
This theorem is referenced by: ttgbas 28130 ttgplusg 28132 ttgvsca 28135 ttgds 28137 |
Copyright terms: Public domain | W3C validator |