![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsinbpsd | Structured version Visualization version GIF version |
Description: The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28900 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsinbpsd | ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itvndx 28460 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
2 | 1re 11259 | . . . . . 6 ⊢ 1 ∈ ℝ | |
3 | 1nn 12275 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 6nn0 12545 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
5 | 1nn0 12540 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12870 | . . . . . . 7 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12769 | . . . . . 6 ⊢ 1 < ;16 |
8 | 2, 7 | gtneii 11371 | . . . . 5 ⊢ ;16 ≠ 1 |
9 | basendx 17254 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | 8, 9 | neeqtrri 3012 | . . . 4 ⊢ ;16 ≠ (Base‘ndx) |
11 | 1, 10 | eqnetri 3009 | . . 3 ⊢ (Itv‘ndx) ≠ (Base‘ndx) |
12 | 2re 12338 | . . . . . 6 ⊢ 2 ∈ ℝ | |
13 | 2nn0 12541 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 12869 | . . . . . . 7 ⊢ 2 < ;10 | |
15 | 3, 4, 13, 14 | declti 12769 | . . . . . 6 ⊢ 2 < ;16 |
16 | 12, 15 | gtneii 11371 | . . . . 5 ⊢ ;16 ≠ 2 |
17 | plusgndx 17324 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
18 | 16, 17 | neeqtrri 3012 | . . . 4 ⊢ ;16 ≠ (+g‘ndx) |
19 | 1, 18 | eqnetri 3009 | . . 3 ⊢ (Itv‘ndx) ≠ (+g‘ndx) |
20 | 11, 19 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) |
21 | 6re 12354 | . . . . . 6 ⊢ 6 ∈ ℝ | |
22 | 6lt10 12865 | . . . . . . 7 ⊢ 6 < ;10 | |
23 | 3, 4, 4, 22 | declti 12769 | . . . . . 6 ⊢ 6 < ;16 |
24 | 21, 23 | gtneii 11371 | . . . . 5 ⊢ ;16 ≠ 6 |
25 | vscandx 17365 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
26 | 24, 25 | neeqtrri 3012 | . . . 4 ⊢ ;16 ≠ ( ·𝑠 ‘ndx) |
27 | 1, 26 | eqnetri 3009 | . . 3 ⊢ (Itv‘ndx) ≠ ( ·𝑠 ‘ndx) |
28 | 2nn 12337 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
29 | 5, 28 | decnncl 12751 | . . . . . . 7 ⊢ ;12 ∈ ℕ |
30 | 29 | nnrei 12273 | . . . . . 6 ⊢ ;12 ∈ ℝ |
31 | 6nn 12353 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
32 | 2lt6 12448 | . . . . . . 7 ⊢ 2 < 6 | |
33 | 5, 13, 31, 32 | declt 12759 | . . . . . 6 ⊢ ;12 < ;16 |
34 | 30, 33 | gtneii 11371 | . . . . 5 ⊢ ;16 ≠ ;12 |
35 | dsndx 17431 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
36 | 34, 35 | neeqtrri 3012 | . . . 4 ⊢ ;16 ≠ (dist‘ndx) |
37 | 1, 36 | eqnetri 3009 | . . 3 ⊢ (Itv‘ndx) ≠ (dist‘ndx) |
38 | 27, 37 | pm3.2i 470 | . 2 ⊢ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx)) |
39 | 20, 38 | pm3.2i 470 | 1 ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ≠ wne 2938 ‘cfv 6563 1c1 11154 2c2 12319 6c6 12323 ;cdc 12731 ndxcnx 17227 Basecbs 17245 +gcplusg 17298 ·𝑠 cvsca 17302 distcds 17307 Itvcitv 28456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-vsca 17315 df-ds 17320 df-itv 28458 |
This theorem is referenced by: ttgbas 28902 ttgplusg 28904 ttgvsca 28907 ttgds 28909 |
Copyright terms: Public domain | W3C validator |