Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  negslem1 Structured version   Visualization version   GIF version

Theorem negslem1 43378
Description: An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.)
Assertion
Ref Expression
negslem1 (𝐴 = 𝐵 → ((𝐹𝐴) Isom 𝑅, 𝑅(𝐴, 𝐴) ↔ (𝐹𝐵) Isom 𝑅, 𝑅(𝐵, 𝐵)))

Proof of Theorem negslem1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
21, 1resisoeq45d 43377 1 (𝐴 = 𝐵 → ((𝐹𝐴) Isom 𝑅, 𝑅(𝐴, 𝐴) ↔ (𝐹𝐵) Isom 𝑅, 𝑅(𝐵, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  ccnv 5694  cres 5697   Isom wiso 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-isom 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator