![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > negslem1 | Structured version Visualization version GIF version |
Description: An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.) |
Ref | Expression |
---|---|
negslem1 | ⊢ (𝐴 = 𝐵 → ((𝐹 ↾ 𝐴) Isom 𝑅, ◡𝑅(𝐴, 𝐴) ↔ (𝐹 ↾ 𝐵) Isom 𝑅, ◡𝑅(𝐵, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1, 1 | resisoeq45d 42171 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹 ↾ 𝐴) Isom 𝑅, ◡𝑅(𝐴, 𝐴) ↔ (𝐹 ↾ 𝐵) Isom 𝑅, ◡𝑅(𝐵, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ◡ccnv 5676 ↾ cres 5679 Isom wiso 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |