Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  negslem1 Structured version   Visualization version   GIF version

Theorem negslem1 43411
Description: An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.)
Assertion
Ref Expression
negslem1 (𝐴 = 𝐵 → ((𝐹𝐴) Isom 𝑅, 𝑅(𝐴, 𝐴) ↔ (𝐹𝐵) Isom 𝑅, 𝑅(𝐵, 𝐵)))

Proof of Theorem negslem1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
21, 1resisoeq45d 43410 1 (𝐴 = 𝐵 → ((𝐹𝐴) Isom 𝑅, 𝑅(𝐴, 𝐴) ↔ (𝐹𝐵) Isom 𝑅, 𝑅(𝐵, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  ccnv 5664  cres 5667   Isom wiso 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator