Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  negslem1 Structured version   Visualization version   GIF version

Theorem negslem1 41767
Description: An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.)
Assertion
Ref Expression
negslem1 (𝐴 = 𝐵 → ((𝐹𝐴) Isom 𝑅, 𝑅(𝐴, 𝐴) ↔ (𝐹𝐵) Isom 𝑅, 𝑅(𝐵, 𝐵)))

Proof of Theorem negslem1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
21, 1resisoeq45d 41766 1 (𝐴 = 𝐵 → ((𝐹𝐴) Isom 𝑅, 𝑅(𝐴, 𝐴) ↔ (𝐹𝐵) Isom 𝑅, 𝑅(𝐵, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  ccnv 5637  cres 5640   Isom wiso 6502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator