![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > negslem1 | Structured version Visualization version GIF version |
Description: An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.) |
Ref | Expression |
---|---|
negslem1 | ⊢ (𝐴 = 𝐵 → ((𝐹 ↾ 𝐴) Isom 𝑅, ◡𝑅(𝐴, 𝐴) ↔ (𝐹 ↾ 𝐵) Isom 𝑅, ◡𝑅(𝐵, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1, 1 | resisoeq45d 41766 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹 ↾ 𝐴) Isom 𝑅, ◡𝑅(𝐴, 𝐴) ↔ (𝐹 ↾ 𝐵) Isom 𝑅, ◡𝑅(𝐵, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ◡ccnv 5637 ↾ cres 5640 Isom wiso 6502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |