Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hasheq0 | Structured version Visualization version GIF version |
Description: Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) |
Ref | Expression |
---|---|
hasheq0 | ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 10947 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3050 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
3 | hashinf 13977 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
4 | 3 | eleq1d 2823 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ↔ +∞ ∈ ℝ)) |
5 | 2, 4 | mtbiri 326 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ∈ ℝ) |
6 | id 22 | . . . . . 6 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) = 0) | |
7 | 0re 10908 | . . . . . 6 ⊢ 0 ∈ ℝ | |
8 | 6, 7 | eqeltrdi 2847 | . . . . 5 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) ∈ ℝ) |
9 | 5, 8 | nsyl 140 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) = 0) |
10 | id 22 | . . . . . . 7 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
11 | 0fin 8916 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
12 | 10, 11 | eqeltrdi 2847 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
13 | 12 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ¬ 𝐴 = ∅) |
14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 = ∅) |
15 | 9, 14 | 2falsed 376 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
16 | 15 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))) |
17 | hashen 13989 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ∅ ∈ Fin) → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) | |
18 | 11, 17 | mpan2 687 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) |
19 | fz10 13206 | . . . . . 6 ⊢ (1...0) = ∅ | |
20 | 19 | fveq2i 6759 | . . . . 5 ⊢ (♯‘(1...0)) = (♯‘∅) |
21 | 0nn0 12178 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
22 | hashfz1 13988 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (♯‘(1...0)) = 0) | |
23 | 21, 22 | ax-mp 5 | . . . . 5 ⊢ (♯‘(1...0)) = 0 |
24 | 20, 23 | eqtr3i 2768 | . . . 4 ⊢ (♯‘∅) = 0 |
25 | 24 | eqeq2i 2751 | . . 3 ⊢ ((♯‘𝐴) = (♯‘∅) ↔ (♯‘𝐴) = 0) |
26 | en0 8758 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
27 | 18, 25, 26 | 3bitr3g 312 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
28 | 16, 27 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ≈ cen 8688 Fincfn 8691 ℝcr 10801 0cc0 10802 1c1 10803 +∞cpnf 10937 ℕ0cn0 12163 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: hashneq0 14007 hashnncl 14009 hash0 14010 hashelne0d 14011 hashgt0 14031 hashle00 14043 seqcoll2 14107 prprrab 14115 hashle2pr 14119 hashge2el2difr 14123 ccat0 14208 ccat1st1st 14263 wrdind 14363 wrd2ind 14364 swrdccat3blem 14380 rev0 14405 repsw0 14418 cshwidx0 14447 fz1f1o 15350 hashbc0 16634 0hashbc 16636 ram0 16651 cshws0 16731 symgvalstruct 18919 symgvalstructOLD 18920 gsmsymgrfix 18951 sylow1lem1 19118 sylow1lem4 19121 sylow2blem3 19142 frgpnabllem1 19389 0ringnnzr 20453 01eq0ring 20456 vieta1lem2 25376 tgldimor 26767 uhgr0vsize0 27509 uhgr0edgfi 27510 usgr1v0e 27596 fusgrfisbase 27598 vtxd0nedgb 27758 vtxdusgr0edgnelALT 27766 usgrvd0nedg 27803 vtxdginducedm1lem4 27812 finsumvtxdg2size 27820 cyclnspth 28069 iswwlksnx 28106 umgrclwwlkge2 28256 clwwisshclwws 28280 hashecclwwlkn1 28342 umgrhashecclwwlk 28343 vdn0conngrumgrv2 28461 frgrwopreg 28588 frrusgrord0lem 28604 wlkl0 28632 frgrregord013 28660 frgrregord13 28661 frgrogt3nreg 28662 friendshipgt3 28663 wrdt2ind 31127 tocyc01 31287 lvecdim0i 31591 hasheuni 31953 signstfvn 32448 signstfveq0a 32455 signshnz 32470 spthcycl 32991 usgrgt2cycl 32992 acycgr1v 33011 umgracycusgr 33016 cusgracyclt3v 33018 elmrsubrn 33382 fsuppind 40202 lindsrng01 45697 |
Copyright terms: Public domain | W3C validator |