![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hasheq0 | Structured version Visualization version GIF version |
Description: Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) |
Ref | Expression |
---|---|
hasheq0 | ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11252 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3049 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
3 | hashinf 14292 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
4 | 3 | eleq1d 2819 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ↔ +∞ ∈ ℝ)) |
5 | 2, 4 | mtbiri 327 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ∈ ℝ) |
6 | id 22 | . . . . . 6 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) = 0) | |
7 | 0re 11213 | . . . . . 6 ⊢ 0 ∈ ℝ | |
8 | 6, 7 | eqeltrdi 2842 | . . . . 5 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) ∈ ℝ) |
9 | 5, 8 | nsyl 140 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) = 0) |
10 | id 22 | . . . . . . 7 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
11 | 0fin 9168 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
12 | 10, 11 | eqeltrdi 2842 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
13 | 12 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ¬ 𝐴 = ∅) |
14 | 13 | adantl 483 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 = ∅) |
15 | 9, 14 | 2falsed 377 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
16 | 15 | ex 414 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))) |
17 | hashen 14304 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ∅ ∈ Fin) → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) | |
18 | 11, 17 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) |
19 | fz10 13519 | . . . . . 6 ⊢ (1...0) = ∅ | |
20 | 19 | fveq2i 6892 | . . . . 5 ⊢ (♯‘(1...0)) = (♯‘∅) |
21 | 0nn0 12484 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
22 | hashfz1 14303 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (♯‘(1...0)) = 0) | |
23 | 21, 22 | ax-mp 5 | . . . . 5 ⊢ (♯‘(1...0)) = 0 |
24 | 20, 23 | eqtr3i 2763 | . . . 4 ⊢ (♯‘∅) = 0 |
25 | 24 | eqeq2i 2746 | . . 3 ⊢ ((♯‘𝐴) = (♯‘∅) ↔ (♯‘𝐴) = 0) |
26 | en0 9010 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
27 | 18, 25, 26 | 3bitr3g 313 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
28 | 16, 27 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∅c0 4322 class class class wbr 5148 ‘cfv 6541 (class class class)co 7406 ≈ cen 8933 Fincfn 8936 ℝcr 11106 0cc0 11107 1c1 11108 +∞cpnf 11242 ℕ0cn0 12469 ...cfz 13481 ♯chash 14287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-card 9931 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-hash 14288 |
This theorem is referenced by: hashneq0 14321 hashnncl 14323 hash0 14324 hashelne0d 14325 hashgt0 14345 hashle00 14357 seqcoll2 14423 prprrab 14431 hashle2pr 14435 hashge2el2difr 14439 ccat0 14523 ccat1st1st 14575 wrdind 14669 wrd2ind 14670 swrdccat3blem 14686 rev0 14711 repsw0 14724 cshwidx0 14753 fz1f1o 15653 hashbc0 16935 0hashbc 16937 ram0 16952 cshws0 17032 symgvalstruct 19259 symgvalstructOLD 19260 gsmsymgrfix 19291 sylow1lem1 19461 sylow1lem4 19464 sylow2blem3 19485 frgpnabllem1 19736 0ringnnzr 20295 01eq0ringOLD 20299 vieta1lem2 25816 tgldimor 27743 uhgr0vsize0 28486 uhgr0edgfi 28487 usgr1v0e 28573 fusgrfisbase 28575 vtxd0nedgb 28735 vtxdusgr0edgnelALT 28743 usgrvd0nedg 28780 vtxdginducedm1lem4 28789 finsumvtxdg2size 28797 cyclnspth 29047 iswwlksnx 29084 umgrclwwlkge2 29234 clwwisshclwws 29258 hashecclwwlkn1 29320 umgrhashecclwwlk 29321 vdn0conngrumgrv2 29439 frgrwopreg 29566 frrusgrord0lem 29582 wlkl0 29610 frgrregord013 29638 frgrregord13 29639 frgrogt3nreg 29640 friendshipgt3 29641 wrdt2ind 32105 tocyc01 32265 lvecdim0i 32679 hasheuni 33072 signstfvn 33569 signstfveq0a 33576 signshnz 33591 spthcycl 34109 usgrgt2cycl 34110 acycgr1v 34129 umgracycusgr 34134 cusgracyclt3v 34136 elmrsubrn 34500 fsuppind 41160 lindsrng01 47103 |
Copyright terms: Public domain | W3C validator |