| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hasheq0 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) |
| Ref | Expression |
|---|---|
| hasheq0 | ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11175 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3031 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
| 3 | hashinf 14260 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
| 4 | 3 | eleq1d 2813 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ↔ +∞ ∈ ℝ)) |
| 5 | 2, 4 | mtbiri 327 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ∈ ℝ) |
| 6 | id 22 | . . . . . 6 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) = 0) | |
| 7 | 0re 11136 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 8 | 6, 7 | eqeltrdi 2836 | . . . . 5 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) ∈ ℝ) |
| 9 | 5, 8 | nsyl 140 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) = 0) |
| 10 | id 22 | . . . . . . 7 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 11 | 0fi 8974 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
| 12 | 10, 11 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
| 13 | 12 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ¬ 𝐴 = ∅) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 = ∅) |
| 15 | 9, 14 | 2falsed 376 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))) |
| 17 | hashen 14272 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ∅ ∈ Fin) → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) | |
| 18 | 11, 17 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) |
| 19 | fz10 13466 | . . . . . 6 ⊢ (1...0) = ∅ | |
| 20 | 19 | fveq2i 6829 | . . . . 5 ⊢ (♯‘(1...0)) = (♯‘∅) |
| 21 | 0nn0 12417 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 22 | hashfz1 14271 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (♯‘(1...0)) = 0) | |
| 23 | 21, 22 | ax-mp 5 | . . . . 5 ⊢ (♯‘(1...0)) = 0 |
| 24 | 20, 23 | eqtr3i 2754 | . . . 4 ⊢ (♯‘∅) = 0 |
| 25 | 24 | eqeq2i 2742 | . . 3 ⊢ ((♯‘𝐴) = (♯‘∅) ↔ (♯‘𝐴) = 0) |
| 26 | en0 8950 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 27 | 18, 25, 26 | 3bitr3g 313 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| 28 | 16, 27 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ≈ cen 8876 Fincfn 8879 ℝcr 11027 0cc0 11028 1c1 11029 +∞cpnf 11165 ℕ0cn0 12402 ...cfz 13428 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 |
| This theorem is referenced by: hashneq0 14289 hashnncl 14291 hash0 14292 hashelne0d 14293 hashgt0 14313 hashle00 14325 seqcoll2 14390 prprrab 14398 hashle2pr 14402 hashge2el2difr 14406 ccat0 14501 ccat1st1st 14553 wrdind 14646 wrd2ind 14647 swrdccat3blem 14663 rev0 14688 repsw0 14701 cshwidx0 14730 fz1f1o 15635 hashbc0 16935 0hashbc 16937 ram0 16952 cshws0 17031 symgvalstruct 19294 gsmsymgrfix 19325 sylow1lem1 19495 sylow1lem4 19498 sylow2blem3 19519 frgpnabllem1 19770 0ringnnzr 20428 01eq0ringOLD 20434 vieta1lem2 26235 tgldimor 28465 uhgr0vsize0 29202 uhgr0edgfi 29203 usgr1v0e 29289 fusgrfisbase 29291 vtxd0nedgb 29452 vtxdusgr0edgnelALT 29460 usgrvd0nedg 29497 vtxdginducedm1lem4 29506 finsumvtxdg2size 29514 cyclnspth 29764 iswwlksnx 29803 umgrclwwlkge2 29953 clwwisshclwws 29977 hashecclwwlkn1 30039 umgrhashecclwwlk 30040 vdn0conngrumgrv2 30158 frgrwopreg 30285 frrusgrord0lem 30301 wlkl0 30329 frgrregord013 30357 frgrregord13 30358 frgrogt3nreg 30359 friendshipgt3 30360 hashne0 32768 wrdt2ind 32908 chnind 32966 chnub 32967 tocyc01 33073 lvecdim0i 33580 hasheuni 34054 signstfvn 34539 signstfveq0a 34546 signshnz 34561 spthcycl 35104 usgrgt2cycl 35105 acycgr1v 35124 umgracycusgr 35129 cusgracyclt3v 35131 elmrsubrn 35495 fsuppind 42566 lindsrng01 48457 |
| Copyright terms: Public domain | W3C validator |