| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hasheq0 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) |
| Ref | Expression |
|---|---|
| hasheq0 | ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11222 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3032 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
| 3 | hashinf 14307 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
| 4 | 3 | eleq1d 2814 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ↔ +∞ ∈ ℝ)) |
| 5 | 2, 4 | mtbiri 327 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ∈ ℝ) |
| 6 | id 22 | . . . . . 6 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) = 0) | |
| 7 | 0re 11183 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 8 | 6, 7 | eqeltrdi 2837 | . . . . 5 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) ∈ ℝ) |
| 9 | 5, 8 | nsyl 140 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) = 0) |
| 10 | id 22 | . . . . . . 7 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 11 | 0fi 9016 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
| 12 | 10, 11 | eqeltrdi 2837 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
| 13 | 12 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ¬ 𝐴 = ∅) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 = ∅) |
| 15 | 9, 14 | 2falsed 376 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))) |
| 17 | hashen 14319 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ∅ ∈ Fin) → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) | |
| 18 | 11, 17 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) |
| 19 | fz10 13513 | . . . . . 6 ⊢ (1...0) = ∅ | |
| 20 | 19 | fveq2i 6864 | . . . . 5 ⊢ (♯‘(1...0)) = (♯‘∅) |
| 21 | 0nn0 12464 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 22 | hashfz1 14318 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (♯‘(1...0)) = 0) | |
| 23 | 21, 22 | ax-mp 5 | . . . . 5 ⊢ (♯‘(1...0)) = 0 |
| 24 | 20, 23 | eqtr3i 2755 | . . . 4 ⊢ (♯‘∅) = 0 |
| 25 | 24 | eqeq2i 2743 | . . 3 ⊢ ((♯‘𝐴) = (♯‘∅) ↔ (♯‘𝐴) = 0) |
| 26 | en0 8992 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 27 | 18, 25, 26 | 3bitr3g 313 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| 28 | 16, 27 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ≈ cen 8918 Fincfn 8921 ℝcr 11074 0cc0 11075 1c1 11076 +∞cpnf 11212 ℕ0cn0 12449 ...cfz 13475 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: hashneq0 14336 hashnncl 14338 hash0 14339 hashelne0d 14340 hashgt0 14360 hashle00 14372 seqcoll2 14437 prprrab 14445 hashle2pr 14449 hashge2el2difr 14453 ccat0 14548 ccat1st1st 14600 wrdind 14694 wrd2ind 14695 swrdccat3blem 14711 rev0 14736 repsw0 14749 cshwidx0 14778 fz1f1o 15683 hashbc0 16983 0hashbc 16985 ram0 17000 cshws0 17079 symgvalstruct 19334 gsmsymgrfix 19365 sylow1lem1 19535 sylow1lem4 19538 sylow2blem3 19559 frgpnabllem1 19810 0ringnnzr 20441 01eq0ringOLD 20447 vieta1lem2 26226 tgldimor 28436 uhgr0vsize0 29173 uhgr0edgfi 29174 usgr1v0e 29260 fusgrfisbase 29262 vtxd0nedgb 29423 vtxdusgr0edgnelALT 29431 usgrvd0nedg 29468 vtxdginducedm1lem4 29477 finsumvtxdg2size 29485 cyclnspth 29738 iswwlksnx 29777 umgrclwwlkge2 29927 clwwisshclwws 29951 hashecclwwlkn1 30013 umgrhashecclwwlk 30014 vdn0conngrumgrv2 30132 frgrwopreg 30259 frrusgrord0lem 30275 wlkl0 30303 frgrregord013 30331 frgrregord13 30332 frgrogt3nreg 30333 friendshipgt3 30334 hashne0 32742 wrdt2ind 32882 chnind 32944 chnub 32945 tocyc01 33082 lvecdim0i 33608 hasheuni 34082 signstfvn 34567 signstfveq0a 34574 signshnz 34589 spthcycl 35123 usgrgt2cycl 35124 acycgr1v 35143 umgracycusgr 35148 cusgracyclt3v 35150 elmrsubrn 35514 fsuppind 42585 lindsrng01 48461 |
| Copyright terms: Public domain | W3C validator |