MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheq0 Structured version   Visualization version   GIF version

Theorem hasheq0 14328
Description: Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.)
Assertion
Ref Expression
hasheq0 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))

Proof of Theorem hasheq0
StepHypRef Expression
1 pnfnre 11215 . . . . . . 7 +∞ ∉ ℝ
21neli 3031 . . . . . 6 ¬ +∞ ∈ ℝ
3 hashinf 14300 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
43eleq1d 2813 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ↔ +∞ ∈ ℝ))
52, 4mtbiri 327 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ∈ ℝ)
6 id 22 . . . . . 6 ((♯‘𝐴) = 0 → (♯‘𝐴) = 0)
7 0re 11176 . . . . . 6 0 ∈ ℝ
86, 7eqeltrdi 2836 . . . . 5 ((♯‘𝐴) = 0 → (♯‘𝐴) ∈ ℝ)
95, 8nsyl 140 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) = 0)
10 id 22 . . . . . . 7 (𝐴 = ∅ → 𝐴 = ∅)
11 0fi 9013 . . . . . . 7 ∅ ∈ Fin
1210, 11eqeltrdi 2836 . . . . . 6 (𝐴 = ∅ → 𝐴 ∈ Fin)
1312con3i 154 . . . . 5 𝐴 ∈ Fin → ¬ 𝐴 = ∅)
1413adantl 481 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 = ∅)
159, 142falsed 376 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1615ex 412 . 2 (𝐴𝑉 → (¬ 𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)))
17 hashen 14312 . . . 4 ((𝐴 ∈ Fin ∧ ∅ ∈ Fin) → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅))
1811, 17mpan2 691 . . 3 (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅))
19 fz10 13506 . . . . . 6 (1...0) = ∅
2019fveq2i 6861 . . . . 5 (♯‘(1...0)) = (♯‘∅)
21 0nn0 12457 . . . . . 6 0 ∈ ℕ0
22 hashfz1 14311 . . . . . 6 (0 ∈ ℕ0 → (♯‘(1...0)) = 0)
2321, 22ax-mp 5 . . . . 5 (♯‘(1...0)) = 0
2420, 23eqtr3i 2754 . . . 4 (♯‘∅) = 0
2524eqeq2i 2742 . . 3 ((♯‘𝐴) = (♯‘∅) ↔ (♯‘𝐴) = 0)
26 en0 8989 . . 3 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
2718, 25, 263bitr3g 313 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
2816, 27pm2.61d2 181 1 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  cen 8915  Fincfn 8918  cr 11067  0cc0 11068  1c1 11069  +∞cpnf 11205  0cn0 12442  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  hashneq0  14329  hashnncl  14331  hash0  14332  hashelne0d  14333  hashgt0  14353  hashle00  14365  seqcoll2  14430  prprrab  14438  hashle2pr  14442  hashge2el2difr  14446  ccat0  14541  ccat1st1st  14593  wrdind  14687  wrd2ind  14688  swrdccat3blem  14704  rev0  14729  repsw0  14742  cshwidx0  14771  fz1f1o  15676  hashbc0  16976  0hashbc  16978  ram0  16993  cshws0  17072  symgvalstruct  19327  gsmsymgrfix  19358  sylow1lem1  19528  sylow1lem4  19531  sylow2blem3  19552  frgpnabllem1  19803  0ringnnzr  20434  01eq0ringOLD  20440  vieta1lem2  26219  tgldimor  28429  uhgr0vsize0  29166  uhgr0edgfi  29167  usgr1v0e  29253  fusgrfisbase  29255  vtxd0nedgb  29416  vtxdusgr0edgnelALT  29424  usgrvd0nedg  29461  vtxdginducedm1lem4  29470  finsumvtxdg2size  29478  cyclnspth  29731  iswwlksnx  29770  umgrclwwlkge2  29920  clwwisshclwws  29944  hashecclwwlkn1  30006  umgrhashecclwwlk  30007  vdn0conngrumgrv2  30125  frgrwopreg  30252  frrusgrord0lem  30268  wlkl0  30296  frgrregord013  30324  frgrregord13  30325  frgrogt3nreg  30326  friendshipgt3  30327  hashne0  32735  wrdt2ind  32875  chnind  32937  chnub  32938  tocyc01  33075  lvecdim0i  33601  hasheuni  34075  signstfvn  34560  signstfveq0a  34567  signshnz  34582  spthcycl  35116  usgrgt2cycl  35117  acycgr1v  35136  umgracycusgr  35141  cusgracyclt3v  35143  elmrsubrn  35507  fsuppind  42578  lindsrng01  48457
  Copyright terms: Public domain W3C validator