| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hasheq0 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) |
| Ref | Expression |
|---|---|
| hasheq0 | ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11148 | . . . . . . 7 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3034 | . . . . . 6 ⊢ ¬ +∞ ∈ ℝ |
| 3 | hashinf 14237 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
| 4 | 3 | eleq1d 2816 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ↔ +∞ ∈ ℝ)) |
| 5 | 2, 4 | mtbiri 327 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ∈ ℝ) |
| 6 | id 22 | . . . . . 6 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) = 0) | |
| 7 | 0re 11109 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 8 | 6, 7 | eqeltrdi 2839 | . . . . 5 ⊢ ((♯‘𝐴) = 0 → (♯‘𝐴) ∈ ℝ) |
| 9 | 5, 8 | nsyl 140 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) = 0) |
| 10 | id 22 | . . . . . . 7 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 11 | 0fi 8959 | . . . . . . 7 ⊢ ∅ ∈ Fin | |
| 12 | 10, 11 | eqeltrdi 2839 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
| 13 | 12 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ¬ 𝐴 = ∅) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 = ∅) |
| 15 | 9, 14 | 2falsed 376 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))) |
| 17 | hashen 14249 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ∅ ∈ Fin) → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) | |
| 18 | 11, 17 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘∅) ↔ 𝐴 ≈ ∅)) |
| 19 | fz10 13440 | . . . . . 6 ⊢ (1...0) = ∅ | |
| 20 | 19 | fveq2i 6820 | . . . . 5 ⊢ (♯‘(1...0)) = (♯‘∅) |
| 21 | 0nn0 12391 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 22 | hashfz1 14248 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (♯‘(1...0)) = 0) | |
| 23 | 21, 22 | ax-mp 5 | . . . . 5 ⊢ (♯‘(1...0)) = 0 |
| 24 | 20, 23 | eqtr3i 2756 | . . . 4 ⊢ (♯‘∅) = 0 |
| 25 | 24 | eqeq2i 2744 | . . 3 ⊢ ((♯‘𝐴) = (♯‘∅) ↔ (♯‘𝐴) = 0) |
| 26 | en0 8935 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 27 | 18, 25, 26 | 3bitr3g 313 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| 28 | 16, 27 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ≈ cen 8861 Fincfn 8864 ℝcr 11000 0cc0 11001 1c1 11002 +∞cpnf 11138 ℕ0cn0 12376 ...cfz 13402 ♯chash 14232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 |
| This theorem is referenced by: hashneq0 14266 hashnncl 14268 hash0 14269 hashelne0d 14270 hashgt0 14290 hashle00 14302 seqcoll2 14367 prprrab 14375 hashle2pr 14379 hashge2el2difr 14383 ccat0 14478 ccat1st1st 14531 wrdind 14624 wrd2ind 14625 swrdccat3blem 14641 rev0 14666 repsw0 14679 cshwidx0 14708 fz1f1o 15612 hashbc0 16912 0hashbc 16914 ram0 16929 cshws0 17008 chnind 18522 chnub 18523 symgvalstruct 19304 gsmsymgrfix 19335 sylow1lem1 19505 sylow1lem4 19508 sylow2blem3 19529 frgpnabllem1 19780 0ringnnzr 20435 01eq0ringOLD 20441 vieta1lem2 26241 tgldimor 28475 uhgr0vsize0 29212 uhgr0edgfi 29213 usgr1v0e 29299 fusgrfisbase 29301 vtxd0nedgb 29462 vtxdusgr0edgnelALT 29470 usgrvd0nedg 29507 vtxdginducedm1lem4 29516 finsumvtxdg2size 29524 cyclnspth 29774 iswwlksnx 29813 umgrclwwlkge2 29963 clwwisshclwws 29987 hashecclwwlkn1 30049 umgrhashecclwwlk 30050 vdn0conngrumgrv2 30168 frgrwopreg 30295 frrusgrord0lem 30311 wlkl0 30339 frgrregord013 30367 frgrregord13 30368 frgrogt3nreg 30369 friendshipgt3 30370 hashne0 32784 wrdt2ind 32926 tocyc01 33079 lvecdim0i 33610 hasheuni 34090 signstfvn 34574 signstfveq0a 34581 signshnz 34596 spthcycl 35165 usgrgt2cycl 35166 acycgr1v 35185 umgracycusgr 35190 cusgracyclt3v 35192 elmrsubrn 35556 fsuppind 42623 lindsrng01 48500 |
| Copyright terms: Public domain | W3C validator |