MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnei Structured version   Visualization version   GIF version

Theorem mnfnei 21745
Description: A neighborhood of -∞ contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
mnfnei ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mnfnei
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2826 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
3 eqid 2826 . . . 4 ran (,) = ran (,)
41, 2, 3leordtval 21737 . . 3 (ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)))
54eleq2i 2909 . 2 (𝐴 ∈ (ordTop‘ ≤ ) ↔ 𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))))
6 tg2 21489 . . 3 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴))
7 elun 4129 . . . . 5 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)))
8 elun 4129 . . . . . . 7 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ↔ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))
9 eqid 2826 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
109elrnmpt 5827 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞)))
1110elv 3505 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞))
12 nltmnf 12514 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
13 pnfxr 10684 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
14 elioc1 12770 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
1513, 14mpan2 687 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
16 simp2 1131 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞) → 𝑦 < -∞)
1715, 16syl6bi 254 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) → 𝑦 < -∞))
1812, 17mtod 199 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ -∞ ∈ (𝑦(,]+∞))
19 eleq2 2906 . . . . . . . . . . . . . 14 (𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (𝑦(,]+∞)))
2019notbid 319 . . . . . . . . . . . . 13 (𝑢 = (𝑦(,]+∞) → (¬ -∞ ∈ 𝑢 ↔ ¬ -∞ ∈ (𝑦(,]+∞)))
2118, 20syl5ibrcom 248 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢))
2221rexlimiv 3285 . . . . . . . . . . 11 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢)
2322pm2.21d 121 . . . . . . . . . 10 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2423adantrd 492 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2511, 24sylbi 218 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
26 eqid 2826 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
2726elrnmpt 5827 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦)))
2827elv 3505 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦))
29 mnfxr 10687 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
3029a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ ℝ*)
31 0xr 10677 . . . . . . . . . . . . . 14 0 ∈ ℝ*
32 simprl 767 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑦 ∈ ℝ*)
33 ifcl 4514 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3431, 32, 33sylancr 587 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3513a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → +∞ ∈ ℝ*)
36 mnflt0 12510 . . . . . . . . . . . . . 14 -∞ < 0
37 simpll 763 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ 𝑢)
38 simprr 769 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢 = (-∞[,)𝑦))
3937, 38eleqtrd 2920 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ (-∞[,)𝑦))
40 elico1 12771 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4129, 32, 40sylancr 587 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4239, 41mpbid 233 . . . . . . . . . . . . . . 15 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦))
4342simp3d 1138 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < 𝑦)
44 breq2 5067 . . . . . . . . . . . . . . 15 (0 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 0 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
45 breq2 5067 . . . . . . . . . . . . . . 15 (𝑦 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 𝑦 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
4644, 45ifboth 4508 . . . . . . . . . . . . . 14 ((-∞ < 0 ∧ -∞ < 𝑦) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4736, 43, 46sylancr 587 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4831a1i 11 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 ∈ ℝ*)
49 xrmin1 12560 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
5031, 32, 49sylancr 587 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
51 0re 10632 . . . . . . . . . . . . . . 15 0 ∈ ℝ
52 ltpnf 12505 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → 0 < +∞)
5351, 52mp1i 13 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 < +∞)
5434, 48, 35, 50, 53xrlelttrd 12543 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) < +∞)
55 xrre2 12553 . . . . . . . . . . . . 13 (((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) < +∞)) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
5630, 34, 35, 47, 54, 55syl32anc 1372 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
57 xrmin2 12561 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
5831, 32, 57sylancr 587 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
59 df-ico 12734 . . . . . . . . . . . . . . 15 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
60 xrltletr 12540 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥 < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → 𝑥 < 𝑦))
6159, 59, 60ixxss2 12747 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
6232, 58, 61syl2anc 584 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
63 simplr 765 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢𝐴)
6438, 63eqsstrrd 4010 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)𝑦) ⊆ 𝐴)
6562, 64sstrd 3981 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴)
66 oveq2 7156 . . . . . . . . . . . . . 14 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞[,)𝑥) = (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)))
6766sseq1d 4002 . . . . . . . . . . . . 13 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → ((-∞[,)𝑥) ⊆ 𝐴 ↔ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴))
6867rspcev 3627 . . . . . . . . . . . 12 ((if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ ∧ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
6956, 65, 68syl2anc 584 . . . . . . . . . . 11 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
7069rexlimdvaa 3290 . . . . . . . . . 10 ((-∞ ∈ 𝑢𝑢𝐴) → (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7170com12 32 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7228, 71sylbi 218 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7325, 72jaoi 853 . . . . . . 7 ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
748, 73sylbi 218 . . . . . 6 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
75 mnfnre 10673 . . . . . . . . . 10 -∞ ∉ ℝ
7675neli 3130 . . . . . . . . 9 ¬ -∞ ∈ ℝ
77 elssuni 4866 . . . . . . . . . . 11 (𝑢 ∈ ran (,) → 𝑢 ran (,))
78 unirnioo 12827 . . . . . . . . . . 11 ℝ = ran (,)
7977, 78sseqtrrdi 4022 . . . . . . . . . 10 (𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ)
8079sseld 3970 . . . . . . . . 9 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → -∞ ∈ ℝ))
8176, 80mtoi 200 . . . . . . . 8 (𝑢 ∈ ran (,) → ¬ -∞ ∈ 𝑢)
8281pm2.21d 121 . . . . . . 7 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8382adantrd 492 . . . . . 6 (𝑢 ∈ ran (,) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8474, 83jaoi 853 . . . . 5 ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
857, 84sylbi 218 . . . 4 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8685rexlimiv 3285 . . 3 (∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
876, 86syl 17 . 2 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
885, 87sylanb 581 1 ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wrex 3144  Vcvv 3500  cun 3938  wss 3940  ifcif 4470   cuni 4837   class class class wbr 5063  cmpt 5143  ran crn 5555  cfv 6352  (class class class)co 7148  cr 10525  0cc0 10526  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12728  (,]cioc 12729  [,)cico 12730  topGenctg 16701  ordTopcordt 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fi 8864  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-topgen 16707  df-ordt 16764  df-ps 17800  df-tsr 17801  df-top 21418  df-bases 21470
This theorem is referenced by:  xlimmnfvlem2  41979
  Copyright terms: Public domain W3C validator