MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnei Structured version   Visualization version   GIF version

Theorem mnfnei 22280
Description: A neighborhood of -∞ contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
mnfnei ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mnfnei
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2738 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
3 eqid 2738 . . . 4 ran (,) = ran (,)
41, 2, 3leordtval 22272 . . 3 (ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)))
54eleq2i 2830 . 2 (𝐴 ∈ (ordTop‘ ≤ ) ↔ 𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))))
6 tg2 22023 . . 3 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴))
7 elun 4079 . . . . 5 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)))
8 elun 4079 . . . . . . 7 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ↔ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))
9 eqid 2738 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
109elrnmpt 5854 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞)))
1110elv 3428 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞))
12 nltmnf 12794 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
13 pnfxr 10960 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
14 elioc1 13050 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
1513, 14mpan2 687 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
16 simp2 1135 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞) → 𝑦 < -∞)
1715, 16syl6bi 252 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) → 𝑦 < -∞))
1812, 17mtod 197 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ -∞ ∈ (𝑦(,]+∞))
19 eleq2 2827 . . . . . . . . . . . . . 14 (𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (𝑦(,]+∞)))
2019notbid 317 . . . . . . . . . . . . 13 (𝑢 = (𝑦(,]+∞) → (¬ -∞ ∈ 𝑢 ↔ ¬ -∞ ∈ (𝑦(,]+∞)))
2118, 20syl5ibrcom 246 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢))
2221rexlimiv 3208 . . . . . . . . . . 11 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢)
2322pm2.21d 121 . . . . . . . . . 10 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2423adantrd 491 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2511, 24sylbi 216 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
26 eqid 2738 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
2726elrnmpt 5854 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦)))
2827elv 3428 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦))
29 mnfxr 10963 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
3029a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ ℝ*)
31 0xr 10953 . . . . . . . . . . . . . 14 0 ∈ ℝ*
32 simprl 767 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑦 ∈ ℝ*)
33 ifcl 4501 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3431, 32, 33sylancr 586 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3513a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → +∞ ∈ ℝ*)
36 mnflt0 12790 . . . . . . . . . . . . . 14 -∞ < 0
37 simpll 763 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ 𝑢)
38 simprr 769 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢 = (-∞[,)𝑦))
3937, 38eleqtrd 2841 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ (-∞[,)𝑦))
40 elico1 13051 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4129, 32, 40sylancr 586 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4239, 41mpbid 231 . . . . . . . . . . . . . . 15 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦))
4342simp3d 1142 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < 𝑦)
44 breq2 5074 . . . . . . . . . . . . . . 15 (0 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 0 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
45 breq2 5074 . . . . . . . . . . . . . . 15 (𝑦 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 𝑦 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
4644, 45ifboth 4495 . . . . . . . . . . . . . 14 ((-∞ < 0 ∧ -∞ < 𝑦) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4736, 43, 46sylancr 586 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4831a1i 11 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 ∈ ℝ*)
49 xrmin1 12840 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
5031, 32, 49sylancr 586 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
51 0re 10908 . . . . . . . . . . . . . . 15 0 ∈ ℝ
52 ltpnf 12785 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → 0 < +∞)
5351, 52mp1i 13 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 < +∞)
5434, 48, 35, 50, 53xrlelttrd 12823 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) < +∞)
55 xrre2 12833 . . . . . . . . . . . . 13 (((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) < +∞)) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
5630, 34, 35, 47, 54, 55syl32anc 1376 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
57 xrmin2 12841 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
5831, 32, 57sylancr 586 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
59 df-ico 13014 . . . . . . . . . . . . . . 15 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
60 xrltletr 12820 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥 < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → 𝑥 < 𝑦))
6159, 59, 60ixxss2 13027 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
6232, 58, 61syl2anc 583 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
63 simplr 765 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢𝐴)
6438, 63eqsstrrd 3956 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)𝑦) ⊆ 𝐴)
6562, 64sstrd 3927 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴)
66 oveq2 7263 . . . . . . . . . . . . . 14 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞[,)𝑥) = (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)))
6766sseq1d 3948 . . . . . . . . . . . . 13 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → ((-∞[,)𝑥) ⊆ 𝐴 ↔ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴))
6867rspcev 3552 . . . . . . . . . . . 12 ((if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ ∧ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
6956, 65, 68syl2anc 583 . . . . . . . . . . 11 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
7069rexlimdvaa 3213 . . . . . . . . . 10 ((-∞ ∈ 𝑢𝑢𝐴) → (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7170com12 32 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7228, 71sylbi 216 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7325, 72jaoi 853 . . . . . . 7 ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
748, 73sylbi 216 . . . . . 6 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
75 mnfnre 10949 . . . . . . . . . 10 -∞ ∉ ℝ
7675neli 3050 . . . . . . . . 9 ¬ -∞ ∈ ℝ
77 elssuni 4868 . . . . . . . . . . 11 (𝑢 ∈ ran (,) → 𝑢 ran (,))
78 unirnioo 13110 . . . . . . . . . . 11 ℝ = ran (,)
7977, 78sseqtrrdi 3968 . . . . . . . . . 10 (𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ)
8079sseld 3916 . . . . . . . . 9 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → -∞ ∈ ℝ))
8176, 80mtoi 198 . . . . . . . 8 (𝑢 ∈ ran (,) → ¬ -∞ ∈ 𝑢)
8281pm2.21d 121 . . . . . . 7 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8382adantrd 491 . . . . . 6 (𝑢 ∈ ran (,) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8474, 83jaoi 853 . . . . 5 ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
857, 84sylbi 216 . . . 4 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8685rexlimiv 3208 . . 3 (∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
876, 86syl 17 . 2 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
885, 87sylanb 580 1 ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cun 3881  wss 3883  ifcif 4456   cuni 4836   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008  (,]cioc 13009  [,)cico 13010  topGenctg 17065  ordTopcordt 17127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-topgen 17071  df-ordt 17129  df-ps 18199  df-tsr 18200  df-top 21951  df-bases 22004
This theorem is referenced by:  xlimmnfvlem2  43264
  Copyright terms: Public domain W3C validator