MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnei Structured version   Visualization version   GIF version

Theorem mnfnei 23108
Description: A neighborhood of -∞ contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
mnfnei ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mnfnei
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2729 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
3 eqid 2729 . . . 4 ran (,) = ran (,)
41, 2, 3leordtval 23100 . . 3 (ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)))
54eleq2i 2820 . 2 (𝐴 ∈ (ordTop‘ ≤ ) ↔ 𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))))
6 tg2 22852 . . 3 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴))
7 elun 4116 . . . . 5 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)))
8 elun 4116 . . . . . . 7 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ↔ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))
9 eqid 2729 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
109elrnmpt 5922 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞)))
1110elv 3452 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞))
12 nltmnf 13089 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
13 pnfxr 11228 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
14 elioc1 13348 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
1513, 14mpan2 691 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
16 simp2 1137 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞) → 𝑦 < -∞)
1715, 16biimtrdi 253 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) → 𝑦 < -∞))
1812, 17mtod 198 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ -∞ ∈ (𝑦(,]+∞))
19 eleq2 2817 . . . . . . . . . . . . . 14 (𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (𝑦(,]+∞)))
2019notbid 318 . . . . . . . . . . . . 13 (𝑢 = (𝑦(,]+∞) → (¬ -∞ ∈ 𝑢 ↔ ¬ -∞ ∈ (𝑦(,]+∞)))
2118, 20syl5ibrcom 247 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢))
2221rexlimiv 3127 . . . . . . . . . . 11 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢)
2322pm2.21d 121 . . . . . . . . . 10 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2423adantrd 491 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2511, 24sylbi 217 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
26 eqid 2729 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
2726elrnmpt 5922 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦)))
2827elv 3452 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦))
29 mnfxr 11231 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
3029a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ ℝ*)
31 0xr 11221 . . . . . . . . . . . . . 14 0 ∈ ℝ*
32 simprl 770 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑦 ∈ ℝ*)
33 ifcl 4534 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3431, 32, 33sylancr 587 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3513a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → +∞ ∈ ℝ*)
36 mnflt0 13085 . . . . . . . . . . . . . 14 -∞ < 0
37 simpll 766 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ 𝑢)
38 simprr 772 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢 = (-∞[,)𝑦))
3937, 38eleqtrd 2830 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ (-∞[,)𝑦))
40 elico1 13349 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4129, 32, 40sylancr 587 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4239, 41mpbid 232 . . . . . . . . . . . . . . 15 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦))
4342simp3d 1144 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < 𝑦)
44 breq2 5111 . . . . . . . . . . . . . . 15 (0 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 0 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
45 breq2 5111 . . . . . . . . . . . . . . 15 (𝑦 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 𝑦 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
4644, 45ifboth 4528 . . . . . . . . . . . . . 14 ((-∞ < 0 ∧ -∞ < 𝑦) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4736, 43, 46sylancr 587 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4831a1i 11 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 ∈ ℝ*)
49 xrmin1 13137 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
5031, 32, 49sylancr 587 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
51 0re 11176 . . . . . . . . . . . . . . 15 0 ∈ ℝ
52 ltpnf 13080 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → 0 < +∞)
5351, 52mp1i 13 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 < +∞)
5434, 48, 35, 50, 53xrlelttrd 13120 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) < +∞)
55 xrre2 13130 . . . . . . . . . . . . 13 (((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) < +∞)) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
5630, 34, 35, 47, 54, 55syl32anc 1380 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
57 xrmin2 13138 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
5831, 32, 57sylancr 587 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
59 df-ico 13312 . . . . . . . . . . . . . . 15 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
60 xrltletr 13117 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥 < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → 𝑥 < 𝑦))
6159, 59, 60ixxss2 13325 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
6232, 58, 61syl2anc 584 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
63 simplr 768 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢𝐴)
6438, 63eqsstrrd 3982 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)𝑦) ⊆ 𝐴)
6562, 64sstrd 3957 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴)
66 oveq2 7395 . . . . . . . . . . . . . 14 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞[,)𝑥) = (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)))
6766sseq1d 3978 . . . . . . . . . . . . 13 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → ((-∞[,)𝑥) ⊆ 𝐴 ↔ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴))
6867rspcev 3588 . . . . . . . . . . . 12 ((if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ ∧ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
6956, 65, 68syl2anc 584 . . . . . . . . . . 11 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
7069rexlimdvaa 3135 . . . . . . . . . 10 ((-∞ ∈ 𝑢𝑢𝐴) → (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7170com12 32 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7228, 71sylbi 217 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7325, 72jaoi 857 . . . . . . 7 ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
748, 73sylbi 217 . . . . . 6 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
75 mnfnre 11217 . . . . . . . . . 10 -∞ ∉ ℝ
7675neli 3031 . . . . . . . . 9 ¬ -∞ ∈ ℝ
77 elssuni 4901 . . . . . . . . . . 11 (𝑢 ∈ ran (,) → 𝑢 ran (,))
78 unirnioo 13410 . . . . . . . . . . 11 ℝ = ran (,)
7977, 78sseqtrrdi 3988 . . . . . . . . . 10 (𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ)
8079sseld 3945 . . . . . . . . 9 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → -∞ ∈ ℝ))
8176, 80mtoi 199 . . . . . . . 8 (𝑢 ∈ ran (,) → ¬ -∞ ∈ 𝑢)
8281pm2.21d 121 . . . . . . 7 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8382adantrd 491 . . . . . 6 (𝑢 ∈ ran (,) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8474, 83jaoi 857 . . . . 5 ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
857, 84sylbi 217 . . . 4 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8685rexlimiv 3127 . . 3 (∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
876, 86syl 17 . 2 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
885, 87sylanb 581 1 ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cun 3912  wss 3914  ifcif 4488   cuni 4871   class class class wbr 5107  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  (,)cioo 13306  (,]cioc 13307  [,)cico 13308  topGenctg 17400  ordTopcordt 17462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-topgen 17406  df-ordt 17464  df-ps 18525  df-tsr 18526  df-top 22781  df-bases 22833
This theorem is referenced by:  xlimmnfvlem2  45831
  Copyright terms: Public domain W3C validator