MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc2dvds Structured version   Visualization version   GIF version

Theorem pc2dvds 16783
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 16780 . . . . 5 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
21ancoms 458 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
32ralrimiva 3122 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
433expia 1121 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
5 oveq2 7349 . . . . . 6 (𝐴 = 0 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 0))
65breq1d 5099 . . . . 5 (𝐴 = 0 → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)))
76ralbidv 3153 . . . 4 (𝐴 = 0 → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)))
8 breq1 5092 . . . 4 (𝐴 = 0 → (𝐴𝐵 ↔ 0 ∥ 𝐵))
97, 8imbi12d 344 . . 3 (𝐴 = 0 → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)))
10 gcddvds 16406 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1110simpld 494 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴)
12 gcdcl 16409 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
1312nn0zd 12486 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
14 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
15 dvdsabsb 16178 . . . . . . . . . . . 12 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴)))
1613, 14, 15syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴)))
1711, 16mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴))
1817adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴))
19 simpl 482 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
2019necon3ai 2951 . . . . . . . . . . . 12 (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
21 gcdn0cl 16405 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
2220, 21sylan2 593 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
2322nnzd 12487 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ)
2422nnne0d 12167 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0)
25 nnabscl 15225 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
2625adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
2726nnzd 12487 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℤ)
28 dvdsval2 16158 . . . . . . . . . 10 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ (abs‘𝐴) ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ))
2923, 24, 27, 28syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ))
3018, 29mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ)
31 nnre 12124 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ ℝ)
32 nngt0 12148 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℕ → 0 < (abs‘𝐴))
3331, 32jca 511 . . . . . . . . . 10 ((abs‘𝐴) ∈ ℕ → ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)))
34 nnre 12124 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ)
35 nngt0 12148 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℕ → 0 < (𝐴 gcd 𝐵))
3634, 35jca 511 . . . . . . . . . 10 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)))
37 divgt0 11982 . . . . . . . . . 10 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵))) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
3833, 36, 37syl2an 596 . . . . . . . . 9 (((abs‘𝐴) ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
3926, 22, 38syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
40 elnnz 12470 . . . . . . . 8 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵))))
4130, 39, 40sylanbrc 583 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ)
42 elnn1uz2 12815 . . . . . . 7 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)))
4341, 42sylib 218 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)))
4410simprd 495 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵)
4544adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ 𝐵)
46 breq1 5092 . . . . . . . . 9 ((𝐴 gcd 𝐵) = (abs‘𝐴) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
4745, 46syl5ibcom 245 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) = (abs‘𝐴) → (abs‘𝐴) ∥ 𝐵))
4826nncnd 12133 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
4922nncnd 12133 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
50 1cnd 11099 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
5148, 49, 50, 24divmuld 11911 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) · 1) = (abs‘𝐴)))
5249mulridd 11121 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) · 1) = (𝐴 gcd 𝐵))
5352eqeq1d 2732 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((𝐴 gcd 𝐵) · 1) = (abs‘𝐴) ↔ (𝐴 gcd 𝐵) = (abs‘𝐴)))
5451, 53bitrd 279 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ (𝐴 gcd 𝐵) = (abs‘𝐴)))
55 absdvdsb 16177 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
5655adantr 480 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
5747, 54, 563imtr4d 294 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 → 𝐴𝐵))
58 exprmfct 16607 . . . . . . . 8 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))
59 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∈ ℙ)
6026adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℕ)
6160nnzd 12487 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℤ)
6260nnne0d 12167 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ≠ 0)
6322adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 𝐵) ∈ ℕ)
64 pcdiv 16756 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ ((abs‘𝐴) ∈ ℤ ∧ (abs‘𝐴) ≠ 0) ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))))
6559, 61, 62, 63, 64syl121anc 1377 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))))
66 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℤ)
67 zq 12844 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
6866, 67syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℚ)
69 pcabs 16779 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴))
7059, 68, 69syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴))
7170oveq1d 7356 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))))
7265, 71eqtrd 2765 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))))
73 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))
7441adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ)
75 pcelnn 16774 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))))
7659, 74, 75syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))))
7773, 76mpbird 257 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ)
7872, 77eqeltrrd 2830 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ)
7959, 63pccld 16754 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℕ0)
8079nn0zd 12486 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ)
81 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ≠ 0)
82 pczcl 16752 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
8359, 66, 81, 82syl12anc 836 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℕ0)
8483nn0zd 12486 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℤ)
85 znnsub 12510 . . . . . . . . . . . . . . 15 (((𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ))
8680, 84, 85syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ))
8778, 86mpbird 257 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴))
8879nn0red 12435 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℝ)
8983nn0red 12435 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℝ)
9088, 89ltnled 11252 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
9187, 90mpbid 232 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)))
92 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ∈ ℤ)
93 nprmdvds1 16609 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
9493ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ 1)
95 gcdid0 16423 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
9666, 95syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 0) = (abs‘𝐴))
9796oveq2d 7357 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = ((abs‘𝐴) / (abs‘𝐴)))
9848adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℂ)
9998, 62dividd 11887 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
10097, 99eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = 1)
101100breq2d 5101 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) ↔ 𝑝 ∥ 1))
10294, 101mtbird 325 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)))
103 oveq2 7349 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
104103oveq2d 7357 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 0 → ((abs‘𝐴) / (𝐴 gcd 𝐵)) = ((abs‘𝐴) / (𝐴 gcd 0)))
105104breq2d 5101 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 0 → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))))
10673, 105syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐵 = 0 → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))))
107106necon3bd 2940 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) → 𝐵 ≠ 0))
108102, 107mpd 15 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ≠ 0)
109 pczcl 16752 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℕ0)
11059, 92, 108, 109syl12anc 836 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℕ0)
111110nn0red 12435 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℝ)
112 lemin 13083 . . . . . . . . . . . . . 14 (((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → ((𝑝 pCnt 𝐴) ≤ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
11389, 89, 111, 112syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
114 pcgcd 16782 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
11559, 66, 92, 114syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
116115breq2d 5101 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)) ↔ (𝑝 pCnt 𝐴) ≤ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵))))
11789leidd 11675 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴))
118117biantrurd 532 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
119113, 116, 1183bitr4rd 312 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
12091, 119mtbird 325 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
121120expr 456 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
122121reximdva 3143 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
123 rexnal 3082 . . . . . . . . 9 (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
124122, 123imbitrdi 251 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
12558, 124syl5 34 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
12657, 125orim12d 966 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)) → (𝐴𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
12743, 126mpd 15 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
128127ord 864 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (¬ 𝐴𝐵 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
129128con4d 115 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
130 2prm 16595 . . . . . 6 2 ∈ ℙ
131130ne0ii 4292 . . . . 5 ℙ ≠ ∅
132 r19.2z 4443 . . . . 5 ((ℙ ≠ ∅ ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))
133131, 132mpan 690 . . . 4 (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))
134 id 22 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
135 zq 12844 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
136135adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℚ)
137 pcxcl 16765 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
138134, 136, 137syl2anr 597 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
139 pnfge 13021 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) ∈ ℝ* → (𝑝 pCnt 𝐵) ≤ +∞)
140138, 139syl 17 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ +∞)
141140biantrurd 532 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (+∞ ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
142 pc0 16758 . . . . . . . . . 10 (𝑝 ∈ ℙ → (𝑝 pCnt 0) = +∞)
143142adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 0) = +∞)
144143breq1d 5099 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ +∞ ≤ (𝑝 pCnt 𝐵)))
145 pnfxr 11158 . . . . . . . . 9 +∞ ∈ ℝ*
146 xrletri3 13045 . . . . . . . . 9 (((𝑝 pCnt 𝐵) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
147138, 145, 146sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
148141, 144, 1473bitr4d 311 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐵) = +∞))
149 pnfnre 11145 . . . . . . . . . 10 +∞ ∉ ℝ
150149neli 3032 . . . . . . . . 9 ¬ +∞ ∈ ℝ
151 eleq1 2817 . . . . . . . . 9 ((𝑝 pCnt 𝐵) = +∞ → ((𝑝 pCnt 𝐵) ∈ ℝ ↔ +∞ ∈ ℝ))
152150, 151mtbiri 327 . . . . . . . 8 ((𝑝 pCnt 𝐵) = +∞ → ¬ (𝑝 pCnt 𝐵) ∈ ℝ)
153109nn0red 12435 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
154153adantll 714 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
155154an4s 660 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑝 ∈ ℙ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
156155expr 456 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝐵 ≠ 0 → (𝑝 pCnt 𝐵) ∈ ℝ))
157156necon1bd 2944 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℝ → 𝐵 = 0))
158152, 157syl5 34 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ → 𝐵 = 0))
159148, 158sylbid 240 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0))
160159rexlimdva 3131 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0))
161 0dvds 16179 . . . . . 6 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
162161adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ∥ 𝐵𝐵 = 0))
163160, 162sylibrd 259 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
164133, 163syl5 34 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
1659, 129, 164pm2.61ne 3011 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
1664, 165impbid 212 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  c0 4281  ifcif 4473   class class class wbr 5089  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   · cmul 11003  +∞cpnf 11135  *cxr 11137   < clt 11138  cle 11139  cmin 11336   / cdiv 11766  cn 12117  2c2 12172  0cn0 12373  cz 12460  cuz 12724  cq 12838  abscabs 15133  cdvds 16155   gcd cgcd 16397  cprime 16574   pCnt cpc 16740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-fz 13400  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-dvds 16156  df-gcd 16398  df-prm 16575  df-pc 16741
This theorem is referenced by:  pc11  16784  pcz  16785  pcprmpw2  16786  pockthg  16810  pgpfi  19510  fislw  19530  gexexlem  19757  ablfac1c  19978  sqff1o  27112  chtublem  27142  bposlem6  27220  aks4d1p7d1  42094  aks4d1p8d2  42097
  Copyright terms: Public domain W3C validator