MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc2dvds Structured version   Visualization version   GIF version

Theorem pc2dvds 16813
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด โˆฅ ๐ต โ†” โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
Distinct variable groups:   ๐ด,๐‘   ๐ต,๐‘

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 16810 . . . . 5 ((๐‘ โˆˆ โ„™ โˆง (๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ด โˆฅ ๐ต)) โ†’ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))
21ancoms 458 . . . 4 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ด โˆฅ ๐ต) โˆง ๐‘ โˆˆ โ„™) โ†’ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))
32ralrimiva 3138 . . 3 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ด โˆฅ ๐ต) โ†’ โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))
433expia 1118 . 2 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด โˆฅ ๐ต โ†’ โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
5 oveq2 7410 . . . . . 6 (๐ด = 0 โ†’ (๐‘ pCnt ๐ด) = (๐‘ pCnt 0))
65breq1d 5149 . . . . 5 (๐ด = 0 โ†’ ((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต) โ†” (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต)))
76ralbidv 3169 . . . 4 (๐ด = 0 โ†’ (โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต) โ†” โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต)))
8 breq1 5142 . . . 4 (๐ด = 0 โ†’ (๐ด โˆฅ ๐ต โ†” 0 โˆฅ ๐ต))
97, 8imbi12d 344 . . 3 (๐ด = 0 โ†’ ((โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต) โ†’ ๐ด โˆฅ ๐ต) โ†” (โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต) โ†’ 0 โˆฅ ๐ต)))
10 gcddvds 16443 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) โˆฅ ๐ด โˆง (๐ด gcd ๐ต) โˆฅ ๐ต))
1110simpld 494 . . . . . . . . . . 11 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆฅ ๐ด)
12 gcdcl 16446 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•0)
1312nn0zd 12582 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆˆ โ„ค)
14 simpl 482 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ ๐ด โˆˆ โ„ค)
15 dvdsabsb 16218 . . . . . . . . . . . 12 (((๐ด gcd ๐ต) โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) โˆฅ ๐ด โ†” (๐ด gcd ๐ต) โˆฅ (absโ€˜๐ด)))
1613, 14, 15syl2anc 583 . . . . . . . . . . 11 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) โˆฅ ๐ด โ†” (๐ด gcd ๐ต) โˆฅ (absโ€˜๐ด)))
1711, 16mpbid 231 . . . . . . . . . 10 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆฅ (absโ€˜๐ด))
1817adantr 480 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (๐ด gcd ๐ต) โˆฅ (absโ€˜๐ด))
19 simpl 482 . . . . . . . . . . . . 13 ((๐ด = 0 โˆง ๐ต = 0) โ†’ ๐ด = 0)
2019necon3ai 2957 . . . . . . . . . . . 12 (๐ด โ‰  0 โ†’ ยฌ (๐ด = 0 โˆง ๐ต = 0))
21 gcdn0cl 16442 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ยฌ (๐ด = 0 โˆง ๐ต = 0)) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•)
2220, 21sylan2 592 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•)
2322nnzd 12583 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (๐ด gcd ๐ต) โˆˆ โ„ค)
2422nnne0d 12260 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (๐ด gcd ๐ต) โ‰  0)
25 nnabscl 15270 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„ค โˆง ๐ด โ‰  0) โ†’ (absโ€˜๐ด) โˆˆ โ„•)
2625adantlr 712 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (absโ€˜๐ด) โˆˆ โ„•)
2726nnzd 12583 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (absโ€˜๐ด) โˆˆ โ„ค)
28 dvdsval2 16199 . . . . . . . . . 10 (((๐ด gcd ๐ต) โˆˆ โ„ค โˆง (๐ด gcd ๐ต) โ‰  0 โˆง (absโ€˜๐ด) โˆˆ โ„ค) โ†’ ((๐ด gcd ๐ต) โˆฅ (absโ€˜๐ด) โ†” ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„ค))
2923, 24, 27, 28syl3anc 1368 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ ((๐ด gcd ๐ต) โˆฅ (absโ€˜๐ด) โ†” ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„ค))
3018, 29mpbid 231 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„ค)
31 nnre 12217 . . . . . . . . . . 11 ((absโ€˜๐ด) โˆˆ โ„• โ†’ (absโ€˜๐ด) โˆˆ โ„)
32 nngt0 12241 . . . . . . . . . . 11 ((absโ€˜๐ด) โˆˆ โ„• โ†’ 0 < (absโ€˜๐ด))
3331, 32jca 511 . . . . . . . . . 10 ((absโ€˜๐ด) โˆˆ โ„• โ†’ ((absโ€˜๐ด) โˆˆ โ„ โˆง 0 < (absโ€˜๐ด)))
34 nnre 12217 . . . . . . . . . . 11 ((๐ด gcd ๐ต) โˆˆ โ„• โ†’ (๐ด gcd ๐ต) โˆˆ โ„)
35 nngt0 12241 . . . . . . . . . . 11 ((๐ด gcd ๐ต) โˆˆ โ„• โ†’ 0 < (๐ด gcd ๐ต))
3634, 35jca 511 . . . . . . . . . 10 ((๐ด gcd ๐ต) โˆˆ โ„• โ†’ ((๐ด gcd ๐ต) โˆˆ โ„ โˆง 0 < (๐ด gcd ๐ต)))
37 divgt0 12080 . . . . . . . . . 10 ((((absโ€˜๐ด) โˆˆ โ„ โˆง 0 < (absโ€˜๐ด)) โˆง ((๐ด gcd ๐ต) โˆˆ โ„ โˆง 0 < (๐ด gcd ๐ต))) โ†’ 0 < ((absโ€˜๐ด) / (๐ด gcd ๐ต)))
3833, 36, 37syl2an 595 . . . . . . . . 9 (((absโ€˜๐ด) โˆˆ โ„• โˆง (๐ด gcd ๐ต) โˆˆ โ„•) โ†’ 0 < ((absโ€˜๐ด) / (๐ด gcd ๐ต)))
3926, 22, 38syl2anc 583 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ 0 < ((absโ€˜๐ด) / (๐ด gcd ๐ต)))
40 elnnz 12566 . . . . . . . 8 (((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„• โ†” (((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„ค โˆง 0 < ((absโ€˜๐ด) / (๐ด gcd ๐ต))))
4130, 39, 40sylanbrc 582 . . . . . . 7 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„•)
42 elnn1uz2 12907 . . . . . . 7 (((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„• โ†” (((absโ€˜๐ด) / (๐ด gcd ๐ต)) = 1 โˆจ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ (โ„คโ‰ฅโ€˜2)))
4341, 42sylib 217 . . . . . 6 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (((absโ€˜๐ด) / (๐ด gcd ๐ต)) = 1 โˆจ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ (โ„คโ‰ฅโ€˜2)))
4410simprd 495 . . . . . . . . . 10 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) โˆฅ ๐ต)
4544adantr 480 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (๐ด gcd ๐ต) โˆฅ ๐ต)
46 breq1 5142 . . . . . . . . 9 ((๐ด gcd ๐ต) = (absโ€˜๐ด) โ†’ ((๐ด gcd ๐ต) โˆฅ ๐ต โ†” (absโ€˜๐ด) โˆฅ ๐ต))
4745, 46syl5ibcom 244 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ ((๐ด gcd ๐ต) = (absโ€˜๐ด) โ†’ (absโ€˜๐ด) โˆฅ ๐ต))
4826nncnd 12226 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (absโ€˜๐ด) โˆˆ โ„‚)
4922nncnd 12226 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (๐ด gcd ๐ต) โˆˆ โ„‚)
50 1cnd 11207 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ 1 โˆˆ โ„‚)
5148, 49, 50, 24divmuld 12010 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (((absโ€˜๐ด) / (๐ด gcd ๐ต)) = 1 โ†” ((๐ด gcd ๐ต) ยท 1) = (absโ€˜๐ด)))
5249mulridd 11229 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ ((๐ด gcd ๐ต) ยท 1) = (๐ด gcd ๐ต))
5352eqeq1d 2726 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (((๐ด gcd ๐ต) ยท 1) = (absโ€˜๐ด) โ†” (๐ด gcd ๐ต) = (absโ€˜๐ด)))
5451, 53bitrd 279 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (((absโ€˜๐ด) / (๐ด gcd ๐ต)) = 1 โ†” (๐ด gcd ๐ต) = (absโ€˜๐ด)))
55 absdvdsb 16217 . . . . . . . . 9 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด โˆฅ ๐ต โ†” (absโ€˜๐ด) โˆฅ ๐ต))
5655adantr 480 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (๐ด โˆฅ ๐ต โ†” (absโ€˜๐ด) โˆฅ ๐ต))
5747, 54, 563imtr4d 294 . . . . . . 7 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (((absโ€˜๐ด) / (๐ด gcd ๐ต)) = 1 โ†’ ๐ด โˆฅ ๐ต))
58 exprmfct 16640 . . . . . . . 8 (((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ (โ„คโ‰ฅโ€˜2) โ†’ โˆƒ๐‘ โˆˆ โ„™ ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))
59 simprl 768 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ๐‘ โˆˆ โ„™)
6026adantr 480 . . . . . . . . . . . . . . . . . 18 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (absโ€˜๐ด) โˆˆ โ„•)
6160nnzd 12583 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (absโ€˜๐ด) โˆˆ โ„ค)
6260nnne0d 12260 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (absโ€˜๐ด) โ‰  0)
6322adantr 480 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐ด gcd ๐ต) โˆˆ โ„•)
64 pcdiv 16786 . . . . . . . . . . . . . . . . 17 ((๐‘ โˆˆ โ„™ โˆง ((absโ€˜๐ด) โˆˆ โ„ค โˆง (absโ€˜๐ด) โ‰  0) โˆง (๐ด gcd ๐ต) โˆˆ โ„•) โ†’ (๐‘ pCnt ((absโ€˜๐ด) / (๐ด gcd ๐ต))) = ((๐‘ pCnt (absโ€˜๐ด)) โˆ’ (๐‘ pCnt (๐ด gcd ๐ต))))
6559, 61, 62, 63, 64syl121anc 1372 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ((absโ€˜๐ด) / (๐ด gcd ๐ต))) = ((๐‘ pCnt (absโ€˜๐ด)) โˆ’ (๐‘ pCnt (๐ด gcd ๐ต))))
66 simplll 772 . . . . . . . . . . . . . . . . . . 19 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ๐ด โˆˆ โ„ค)
67 zq 12936 . . . . . . . . . . . . . . . . . . 19 (๐ด โˆˆ โ„ค โ†’ ๐ด โˆˆ โ„š)
6866, 67syl 17 . . . . . . . . . . . . . . . . . 18 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ๐ด โˆˆ โ„š)
69 pcabs 16809 . . . . . . . . . . . . . . . . . 18 ((๐‘ โˆˆ โ„™ โˆง ๐ด โˆˆ โ„š) โ†’ (๐‘ pCnt (absโ€˜๐ด)) = (๐‘ pCnt ๐ด))
7059, 68, 69syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt (absโ€˜๐ด)) = (๐‘ pCnt ๐ด))
7170oveq1d 7417 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt (absโ€˜๐ด)) โˆ’ (๐‘ pCnt (๐ด gcd ๐ต))) = ((๐‘ pCnt ๐ด) โˆ’ (๐‘ pCnt (๐ด gcd ๐ต))))
7265, 71eqtrd 2764 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ((absโ€˜๐ด) / (๐ด gcd ๐ต))) = ((๐‘ pCnt ๐ด) โˆ’ (๐‘ pCnt (๐ด gcd ๐ต))))
73 simprr 770 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))
7441adantr 480 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„•)
75 pcelnn 16804 . . . . . . . . . . . . . . . . 17 ((๐‘ โˆˆ โ„™ โˆง ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ โ„•) โ†’ ((๐‘ pCnt ((absโ€˜๐ด) / (๐ด gcd ๐ต))) โˆˆ โ„• โ†” ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต))))
7659, 74, 75syl2anc 583 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt ((absโ€˜๐ด) / (๐ด gcd ๐ต))) โˆˆ โ„• โ†” ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต))))
7773, 76mpbird 257 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ((absโ€˜๐ด) / (๐ด gcd ๐ต))) โˆˆ โ„•)
7872, 77eqeltrrd 2826 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt ๐ด) โˆ’ (๐‘ pCnt (๐ด gcd ๐ต))) โˆˆ โ„•)
7959, 63pccld 16784 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt (๐ด gcd ๐ต)) โˆˆ โ„•0)
8079nn0zd 12582 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt (๐ด gcd ๐ต)) โˆˆ โ„ค)
81 simplr 766 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ๐ด โ‰  0)
82 pczcl 16782 . . . . . . . . . . . . . . . . 17 ((๐‘ โˆˆ โ„™ โˆง (๐ด โˆˆ โ„ค โˆง ๐ด โ‰  0)) โ†’ (๐‘ pCnt ๐ด) โˆˆ โ„•0)
8359, 66, 81, 82syl12anc 834 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ๐ด) โˆˆ โ„•0)
8483nn0zd 12582 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ๐ด) โˆˆ โ„ค)
85 znnsub 12606 . . . . . . . . . . . . . . 15 (((๐‘ pCnt (๐ด gcd ๐ต)) โˆˆ โ„ค โˆง (๐‘ pCnt ๐ด) โˆˆ โ„ค) โ†’ ((๐‘ pCnt (๐ด gcd ๐ต)) < (๐‘ pCnt ๐ด) โ†” ((๐‘ pCnt ๐ด) โˆ’ (๐‘ pCnt (๐ด gcd ๐ต))) โˆˆ โ„•))
8680, 84, 85syl2anc 583 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt (๐ด gcd ๐ต)) < (๐‘ pCnt ๐ด) โ†” ((๐‘ pCnt ๐ด) โˆ’ (๐‘ pCnt (๐ด gcd ๐ต))) โˆˆ โ„•))
8778, 86mpbird 257 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt (๐ด gcd ๐ต)) < (๐‘ pCnt ๐ด))
8879nn0red 12531 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt (๐ด gcd ๐ต)) โˆˆ โ„)
8983nn0red 12531 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ๐ด) โˆˆ โ„)
9088, 89ltnled 11359 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt (๐ด gcd ๐ต)) < (๐‘ pCnt ๐ด) โ†” ยฌ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt (๐ด gcd ๐ต))))
9187, 90mpbid 231 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ยฌ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt (๐ด gcd ๐ต)))
92 simpllr 773 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ๐ต โˆˆ โ„ค)
93 nprmdvds1 16642 . . . . . . . . . . . . . . . . . . 19 (๐‘ โˆˆ โ„™ โ†’ ยฌ ๐‘ โˆฅ 1)
9493ad2antrl 725 . . . . . . . . . . . . . . . . . 18 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ยฌ ๐‘ โˆฅ 1)
95 gcdid0 16460 . . . . . . . . . . . . . . . . . . . . . 22 (๐ด โˆˆ โ„ค โ†’ (๐ด gcd 0) = (absโ€˜๐ด))
9666, 95syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐ด gcd 0) = (absโ€˜๐ด))
9796oveq2d 7418 . . . . . . . . . . . . . . . . . . . 20 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((absโ€˜๐ด) / (๐ด gcd 0)) = ((absโ€˜๐ด) / (absโ€˜๐ด)))
9848adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (absโ€˜๐ด) โˆˆ โ„‚)
9998, 62dividd 11986 . . . . . . . . . . . . . . . . . . . 20 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((absโ€˜๐ด) / (absโ€˜๐ด)) = 1)
10097, 99eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((absโ€˜๐ด) / (๐ด gcd 0)) = 1)
101100breq2d 5151 . . . . . . . . . . . . . . . . . 18 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd 0)) โ†” ๐‘ โˆฅ 1))
10294, 101mtbird 325 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ยฌ ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd 0)))
103 oveq2 7410 . . . . . . . . . . . . . . . . . . . . 21 (๐ต = 0 โ†’ (๐ด gcd ๐ต) = (๐ด gcd 0))
104103oveq2d 7418 . . . . . . . . . . . . . . . . . . . 20 (๐ต = 0 โ†’ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) = ((absโ€˜๐ด) / (๐ด gcd 0)))
105104breq2d 5151 . . . . . . . . . . . . . . . . . . 19 (๐ต = 0 โ†’ (๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โ†” ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd 0))))
10673, 105syl5ibcom 244 . . . . . . . . . . . . . . . . . 18 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐ต = 0 โ†’ ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd 0))))
107106necon3bd 2946 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (ยฌ ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd 0)) โ†’ ๐ต โ‰  0))
108102, 107mpd 15 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ๐ต โ‰  0)
109 pczcl 16782 . . . . . . . . . . . . . . . 16 ((๐‘ โˆˆ โ„™ โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„•0)
11059, 92, 108, 109syl12anc 834 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„•0)
111110nn0red 12531 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„)
112 lemin 13169 . . . . . . . . . . . . . 14 (((๐‘ pCnt ๐ด) โˆˆ โ„ โˆง (๐‘ pCnt ๐ด) โˆˆ โ„ โˆง (๐‘ pCnt ๐ต) โˆˆ โ„) โ†’ ((๐‘ pCnt ๐ด) โ‰ค if((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต), (๐‘ pCnt ๐ด), (๐‘ pCnt ๐ต)) โ†” ((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ด) โˆง (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))))
11389, 89, 111, 112syl3anc 1368 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt ๐ด) โ‰ค if((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต), (๐‘ pCnt ๐ด), (๐‘ pCnt ๐ต)) โ†” ((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ด) โˆง (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))))
114 pcgcd 16812 . . . . . . . . . . . . . . 15 ((๐‘ โˆˆ โ„™ โˆง ๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐‘ pCnt (๐ด gcd ๐ต)) = if((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต), (๐‘ pCnt ๐ด), (๐‘ pCnt ๐ต)))
11559, 66, 92, 114syl3anc 1368 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt (๐ด gcd ๐ต)) = if((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต), (๐‘ pCnt ๐ด), (๐‘ pCnt ๐ต)))
116115breq2d 5151 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt (๐ด gcd ๐ต)) โ†” (๐‘ pCnt ๐ด) โ‰ค if((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต), (๐‘ pCnt ๐ด), (๐‘ pCnt ๐ต))))
11789leidd 11778 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ด))
118117biantrurd 532 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต) โ†” ((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ด) โˆง (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))))
119113, 116, 1183bitr4rd 312 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ((๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต) โ†” (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt (๐ด gcd ๐ต))))
12091, 119mtbird 325 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง (๐‘ โˆˆ โ„™ โˆง ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)))) โ†’ ยฌ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))
121120expr 456 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โˆง ๐‘ โˆˆ โ„™) โ†’ (๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โ†’ ยฌ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
122121reximdva 3160 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (โˆƒ๐‘ โˆˆ โ„™ ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โ†’ โˆƒ๐‘ โˆˆ โ„™ ยฌ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
123 rexnal 3092 . . . . . . . . 9 (โˆƒ๐‘ โˆˆ โ„™ ยฌ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต) โ†” ยฌ โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))
124122, 123imbitrdi 250 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (โˆƒ๐‘ โˆˆ โ„™ ๐‘ โˆฅ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โ†’ ยฌ โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
12558, 124syl5 34 . . . . . . 7 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ (โ„คโ‰ฅโ€˜2) โ†’ ยฌ โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
12657, 125orim12d 961 . . . . . 6 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ ((((absโ€˜๐ด) / (๐ด gcd ๐ต)) = 1 โˆจ ((absโ€˜๐ด) / (๐ด gcd ๐ต)) โˆˆ (โ„คโ‰ฅโ€˜2)) โ†’ (๐ด โˆฅ ๐ต โˆจ ยฌ โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต))))
12743, 126mpd 15 . . . . 5 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (๐ด โˆฅ ๐ต โˆจ ยฌ โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
128127ord 861 . . . 4 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (ยฌ ๐ด โˆฅ ๐ต โ†’ ยฌ โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
129128con4d 115 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐ด โ‰  0) โ†’ (โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต) โ†’ ๐ด โˆฅ ๐ต))
130 2prm 16628 . . . . . 6 2 โˆˆ โ„™
131130ne0ii 4330 . . . . 5 โ„™ โ‰  โˆ…
132 r19.2z 4487 . . . . 5 ((โ„™ โ‰  โˆ… โˆง โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต)) โ†’ โˆƒ๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต))
133131, 132mpan 687 . . . 4 (โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต) โ†’ โˆƒ๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต))
134 id 22 . . . . . . . . . . 11 (๐‘ โˆˆ โ„™ โ†’ ๐‘ โˆˆ โ„™)
135 zq 12936 . . . . . . . . . . . 12 (๐ต โˆˆ โ„ค โ†’ ๐ต โˆˆ โ„š)
136135adantl 481 . . . . . . . . . . 11 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ ๐ต โˆˆ โ„š)
137 pcxcl 16795 . . . . . . . . . . 11 ((๐‘ โˆˆ โ„™ โˆง ๐ต โˆˆ โ„š) โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„*)
138134, 136, 137syl2anr 596 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„*)
139 pnfge 13108 . . . . . . . . . 10 ((๐‘ pCnt ๐ต) โˆˆ โ„* โ†’ (๐‘ pCnt ๐ต) โ‰ค +โˆž)
140138, 139syl 17 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ (๐‘ pCnt ๐ต) โ‰ค +โˆž)
141140biantrurd 532 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ (+โˆž โ‰ค (๐‘ pCnt ๐ต) โ†” ((๐‘ pCnt ๐ต) โ‰ค +โˆž โˆง +โˆž โ‰ค (๐‘ pCnt ๐ต))))
142 pc0 16788 . . . . . . . . . 10 (๐‘ โˆˆ โ„™ โ†’ (๐‘ pCnt 0) = +โˆž)
143142adantl 481 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ (๐‘ pCnt 0) = +โˆž)
144143breq1d 5149 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ ((๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต) โ†” +โˆž โ‰ค (๐‘ pCnt ๐ต)))
145 pnfxr 11266 . . . . . . . . 9 +โˆž โˆˆ โ„*
146 xrletri3 13131 . . . . . . . . 9 (((๐‘ pCnt ๐ต) โˆˆ โ„* โˆง +โˆž โˆˆ โ„*) โ†’ ((๐‘ pCnt ๐ต) = +โˆž โ†” ((๐‘ pCnt ๐ต) โ‰ค +โˆž โˆง +โˆž โ‰ค (๐‘ pCnt ๐ต))))
147138, 145, 146sylancl 585 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ ((๐‘ pCnt ๐ต) = +โˆž โ†” ((๐‘ pCnt ๐ต) โ‰ค +โˆž โˆง +โˆž โ‰ค (๐‘ pCnt ๐ต))))
148141, 144, 1473bitr4d 311 . . . . . . 7 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ ((๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต) โ†” (๐‘ pCnt ๐ต) = +โˆž))
149 pnfnre 11253 . . . . . . . . . 10 +โˆž โˆ‰ โ„
150149neli 3040 . . . . . . . . 9 ยฌ +โˆž โˆˆ โ„
151 eleq1 2813 . . . . . . . . 9 ((๐‘ pCnt ๐ต) = +โˆž โ†’ ((๐‘ pCnt ๐ต) โˆˆ โ„ โ†” +โˆž โˆˆ โ„))
152150, 151mtbiri 327 . . . . . . . 8 ((๐‘ pCnt ๐ต) = +โˆž โ†’ ยฌ (๐‘ pCnt ๐ต) โˆˆ โ„)
153109nn0red 12531 . . . . . . . . . . . 12 ((๐‘ โˆˆ โ„™ โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„)
154153adantll 711 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„™) โˆง (๐ต โˆˆ โ„ค โˆง ๐ต โ‰  0)) โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„)
155154an4s 657 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง (๐‘ โˆˆ โ„™ โˆง ๐ต โ‰  0)) โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„)
156155expr 456 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ (๐ต โ‰  0 โ†’ (๐‘ pCnt ๐ต) โˆˆ โ„))
157156necon1bd 2950 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ (ยฌ (๐‘ pCnt ๐ต) โˆˆ โ„ โ†’ ๐ต = 0))
158152, 157syl5 34 . . . . . . 7 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ ((๐‘ pCnt ๐ต) = +โˆž โ†’ ๐ต = 0))
159148, 158sylbid 239 . . . . . 6 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„™) โ†’ ((๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต) โ†’ ๐ต = 0))
160159rexlimdva 3147 . . . . 5 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (โˆƒ๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต) โ†’ ๐ต = 0))
161 0dvds 16219 . . . . . 6 (๐ต โˆˆ โ„ค โ†’ (0 โˆฅ ๐ต โ†” ๐ต = 0))
162161adantl 481 . . . . 5 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (0 โˆฅ ๐ต โ†” ๐ต = 0))
163160, 162sylibrd 259 . . . 4 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (โˆƒ๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต) โ†’ 0 โˆฅ ๐ต))
164133, 163syl5 34 . . 3 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt 0) โ‰ค (๐‘ pCnt ๐ต) โ†’ 0 โˆฅ ๐ต))
1659, 129, 164pm2.61ne 3019 . 2 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต) โ†’ ๐ด โˆฅ ๐ต))
1664, 165impbid 211 1 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด โˆฅ ๐ต โ†” โˆ€๐‘ โˆˆ โ„™ (๐‘ pCnt ๐ด) โ‰ค (๐‘ pCnt ๐ต)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆจ wo 844   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2932  โˆ€wral 3053  โˆƒwrex 3062  โˆ…c0 4315  ifcif 4521   class class class wbr 5139  โ€˜cfv 6534  (class class class)co 7402  โ„‚cc 11105  โ„cr 11106  0cc0 11107  1c1 11108   ยท cmul 11112  +โˆžcpnf 11243  โ„*cxr 11245   < clt 11246   โ‰ค cle 11247   โˆ’ cmin 11442   / cdiv 11869  โ„•cn 12210  2c2 12265  โ„•0cn0 12470  โ„คcz 12556  โ„คโ‰ฅcuz 12820  โ„šcq 12930  abscabs 15179   โˆฅ cdvds 16196   gcd cgcd 16434  โ„™cprime 16607   pCnt cpc 16770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-n0 12471  df-z 12557  df-uz 12821  df-q 12931  df-rp 12973  df-fz 13483  df-fl 13755  df-mod 13833  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-dvds 16197  df-gcd 16435  df-prm 16608  df-pc 16771
This theorem is referenced by:  pc11  16814  pcz  16815  pcprmpw2  16816  pockthg  16840  pgpfi  19517  fislw  19537  gexexlem  19764  ablfac1c  19985  sqff1o  27033  chtublem  27063  bposlem6  27141  aks4d1p7d1  41444  aks4d1p8d2  41447
  Copyright terms: Public domain W3C validator