Proof of Theorem pc2dvds
Step | Hyp | Ref
| Expression |
1 | | pcdvdstr 16586 |
. . . . 5
⊢ ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)) |
2 | 1 | ancoms 459 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)) |
3 | 2 | ralrimiva 3104 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)) |
4 | 3 | 3expia 1120 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) |
5 | | oveq2 7292 |
. . . . . 6
⊢ (𝐴 = 0 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 0)) |
6 | 5 | breq1d 5085 |
. . . . 5
⊢ (𝐴 = 0 → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))) |
7 | 6 | ralbidv 3113 |
. . . 4
⊢ (𝐴 = 0 → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))) |
8 | | breq1 5078 |
. . . 4
⊢ (𝐴 = 0 → (𝐴 ∥ 𝐵 ↔ 0 ∥ 𝐵)) |
9 | 7, 8 | imbi12d 345 |
. . 3
⊢ (𝐴 = 0 → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴 ∥ 𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))) |
10 | | gcddvds 16219 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
11 | 10 | simpld 495 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
12 | | gcdcl 16222 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈
ℕ0) |
13 | 12 | nn0zd 12433 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ) |
14 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈
ℤ) |
15 | | dvdsabsb 15994 |
. . . . . . . . . . . 12
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴))) |
16 | 13, 14, 15 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴))) |
17 | 11, 16 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴)) |
18 | 17 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴)) |
19 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0) |
20 | 19 | necon3ai 2969 |
. . . . . . . . . . . 12
⊢ (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
21 | | gcdn0cl 16218 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) |
22 | 20, 21 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ) |
23 | 22 | nnzd 12434 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ) |
24 | 22 | nnne0d 12032 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0) |
25 | | nnabscl 15046 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℕ) |
26 | 25 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℕ) |
27 | 26 | nnzd 12434 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℤ) |
28 | | dvdsval2 15975 |
. . . . . . . . . 10
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ (abs‘𝐴) ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ)) |
29 | 23, 24, 27, 28 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ)) |
30 | 18, 29 | mpbid 231 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) →
((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ) |
31 | | nnre 11989 |
. . . . . . . . . . 11
⊢
((abs‘𝐴)
∈ ℕ → (abs‘𝐴) ∈ ℝ) |
32 | | nngt0 12013 |
. . . . . . . . . . 11
⊢
((abs‘𝐴)
∈ ℕ → 0 < (abs‘𝐴)) |
33 | 31, 32 | jca 512 |
. . . . . . . . . 10
⊢
((abs‘𝐴)
∈ ℕ → ((abs‘𝐴) ∈ ℝ ∧ 0 <
(abs‘𝐴))) |
34 | | nnre 11989 |
. . . . . . . . . . 11
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ) |
35 | | nngt0 12013 |
. . . . . . . . . . 11
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → 0 < (𝐴 gcd 𝐵)) |
36 | 34, 35 | jca 512 |
. . . . . . . . . 10
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵))) |
37 | | divgt0 11852 |
. . . . . . . . . 10
⊢
((((abs‘𝐴)
∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵))) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵))) |
38 | 33, 36, 37 | syl2an 596 |
. . . . . . . . 9
⊢
(((abs‘𝐴)
∈ ℕ ∧ (𝐴 gcd
𝐵) ∈ ℕ) → 0
< ((abs‘𝐴) /
(𝐴 gcd 𝐵))) |
39 | 26, 22, 38 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 0 <
((abs‘𝐴) / (𝐴 gcd 𝐵))) |
40 | | elnnz 12338 |
. . . . . . . 8
⊢
(((abs‘𝐴) /
(𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 <
((abs‘𝐴) / (𝐴 gcd 𝐵)))) |
41 | 30, 39, 40 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) →
((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ) |
42 | | elnn1uz2 12674 |
. . . . . . 7
⊢
(((abs‘𝐴) /
(𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈
(ℤ≥‘2))) |
43 | 41, 42 | sylib 217 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) →
(((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈
(ℤ≥‘2))) |
44 | 10 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
45 | 44 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ 𝐵) |
46 | | breq1 5078 |
. . . . . . . . 9
⊢ ((𝐴 gcd 𝐵) = (abs‘𝐴) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (abs‘𝐴) ∥ 𝐵)) |
47 | 45, 46 | syl5ibcom 244 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) = (abs‘𝐴) → (abs‘𝐴) ∥ 𝐵)) |
48 | 26 | nncnd 11998 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℂ) |
49 | 22 | nncnd 11998 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ) |
50 | | 1cnd 10979 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 1 ∈
ℂ) |
51 | 48, 49, 50, 24 | divmuld 11782 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) →
(((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) · 1) = (abs‘𝐴))) |
52 | 49 | mulid1d 11001 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) · 1) = (𝐴 gcd 𝐵)) |
53 | 52 | eqeq1d 2741 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((𝐴 gcd 𝐵) · 1) = (abs‘𝐴) ↔ (𝐴 gcd 𝐵) = (abs‘𝐴))) |
54 | 51, 53 | bitrd 278 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) →
(((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ (𝐴 gcd 𝐵) = (abs‘𝐴))) |
55 | | absdvdsb 15993 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ (abs‘𝐴) ∥ 𝐵)) |
56 | 55 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 ∥ 𝐵 ↔ (abs‘𝐴) ∥ 𝐵)) |
57 | 47, 54, 56 | 3imtr4d 294 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) →
(((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 → 𝐴 ∥ 𝐵)) |
58 | | exprmfct 16418 |
. . . . . . . 8
⊢
(((abs‘𝐴) /
(𝐴 gcd 𝐵)) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥
((abs‘𝐴) / (𝐴 gcd 𝐵))) |
59 | | simprl 768 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∈ ℙ) |
60 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℕ) |
61 | 60 | nnzd 12434 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℤ) |
62 | 60 | nnne0d 12032 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ≠ 0) |
63 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 𝐵) ∈ ℕ) |
64 | | pcdiv 16562 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ ℙ ∧
((abs‘𝐴) ∈
ℤ ∧ (abs‘𝐴)
≠ 0) ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵)))) |
65 | 59, 61, 62, 63, 64 | syl121anc 1374 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵)))) |
66 | | simplll 772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℤ) |
67 | | zq 12703 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℚ) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℚ) |
69 | | pcabs 16585 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴)) |
70 | 59, 68, 69 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴)) |
71 | 70 | oveq1d 7299 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵)))) |
72 | 65, 71 | eqtrd 2779 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵)))) |
73 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))) |
74 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ) |
75 | | pcelnn 16580 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ ℙ ∧
((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) |
76 | 59, 74, 75 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) |
77 | 73, 76 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ) |
78 | 72, 77 | eqeltrrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ) |
79 | 59, 63 | pccld 16560 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈
ℕ0) |
80 | 79 | nn0zd 12433 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ) |
81 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ≠ 0) |
82 | | pczcl 16558 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
83 | 59, 66, 81, 82 | syl12anc 834 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
84 | 83 | nn0zd 12433 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℤ) |
85 | | znnsub 12375 |
. . . . . . . . . . . . . . 15
⊢ (((𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ)) |
86 | 80, 84, 85 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ)) |
87 | 78, 86 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴)) |
88 | 79 | nn0red 12303 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℝ) |
89 | 83 | nn0red 12303 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℝ) |
90 | 88, 89 | ltnled 11131 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)))) |
91 | 87, 90 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))) |
92 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ∈ ℤ) |
93 | | nprmdvds1 16420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ ℙ → ¬
𝑝 ∥
1) |
94 | 93 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ 1) |
95 | | gcdid0 16236 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴)) |
96 | 66, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 0) = (abs‘𝐴)) |
97 | 96 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = ((abs‘𝐴) / (abs‘𝐴))) |
98 | 48 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℂ) |
99 | 98, 62 | dividd 11758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (abs‘𝐴)) = 1) |
100 | 97, 99 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = 1) |
101 | 100 | breq2d 5087 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) ↔ 𝑝 ∥ 1)) |
102 | 94, 101 | mtbird 325 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))) |
103 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0)) |
104 | 103 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 = 0 → ((abs‘𝐴) / (𝐴 gcd 𝐵)) = ((abs‘𝐴) / (𝐴 gcd 0))) |
105 | 104 | breq2d 5087 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 = 0 → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)))) |
106 | 73, 105 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐵 = 0 → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)))) |
107 | 106 | necon3bd 2958 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) → 𝐵 ≠ 0)) |
108 | 102, 107 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ≠ 0) |
109 | | pczcl 16558 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈
ℕ0) |
110 | 59, 92, 108, 109 | syl12anc 834 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈
ℕ0) |
111 | 110 | nn0red 12303 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℝ) |
112 | | lemin 12935 |
. . . . . . . . . . . . . 14
⊢ (((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → ((𝑝 pCnt 𝐴) ≤ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))) |
113 | 89, 89, 111, 112 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))) |
114 | | pcgcd 16588 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵))) |
115 | 59, 66, 92, 114 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵))) |
116 | 115 | breq2d 5087 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)) ↔ (𝑝 pCnt 𝐴) ≤ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))) |
117 | 89 | leidd 11550 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴)) |
118 | 117 | biantrurd 533 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))) |
119 | 113, 116,
118 | 3bitr4rd 312 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)))) |
120 | 91, 119 | mtbird 325 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)) |
121 | 120 | expr 457 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) |
122 | 121 | reximdva 3204 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) |
123 | | rexnal 3170 |
. . . . . . . . 9
⊢
(∃𝑝 ∈
ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)) |
124 | 122, 123 | syl6ib 250 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) |
125 | 58, 124 | syl5 34 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) →
(((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ≥‘2)
→ ¬ ∀𝑝
∈ ℙ (𝑝 pCnt
𝐴) ≤ (𝑝 pCnt 𝐵))) |
126 | 57, 125 | orim12d 962 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) →
((((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ≥‘2))
→ (𝐴 ∥ 𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))) |
127 | 43, 126 | mpd 15 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 ∥ 𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) |
128 | 127 | ord 861 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (¬ 𝐴 ∥ 𝐵 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) |
129 | 128 | con4d 115 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴 ∥ 𝐵)) |
130 | | 2prm 16406 |
. . . . . 6
⊢ 2 ∈
ℙ |
131 | 130 | ne0ii 4272 |
. . . . 5
⊢ ℙ
≠ ∅ |
132 | | r19.2z 4426 |
. . . . 5
⊢ ((ℙ
≠ ∅ ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)) |
133 | 131, 132 | mpan 687 |
. . . 4
⊢
(∀𝑝 ∈
ℙ (𝑝 pCnt 0) ≤
(𝑝 pCnt 𝐵) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)) |
134 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℙ) |
135 | | zq 12703 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℚ) |
136 | 135 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈
ℚ) |
137 | | pcxcl 16571 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈
ℝ*) |
138 | 134, 136,
137 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈
ℝ*) |
139 | | pnfge 12875 |
. . . . . . . . . 10
⊢ ((𝑝 pCnt 𝐵) ∈ ℝ* → (𝑝 pCnt 𝐵) ≤ +∞) |
140 | 138, 139 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ +∞) |
141 | 140 | biantrurd 533 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) →
(+∞ ≤ (𝑝 pCnt
𝐵) ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵)))) |
142 | | pc0 16564 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℙ → (𝑝 pCnt 0) =
+∞) |
143 | 142 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 0) =
+∞) |
144 | 143 | breq1d 5085 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ +∞ ≤ (𝑝 pCnt 𝐵))) |
145 | | pnfxr 11038 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
146 | | xrletri3 12897 |
. . . . . . . . 9
⊢ (((𝑝 pCnt 𝐵) ∈ ℝ* ∧ +∞
∈ ℝ*) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵)))) |
147 | 138, 145,
146 | sylancl 586 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵)))) |
148 | 141, 144,
147 | 3bitr4d 311 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐵) = +∞)) |
149 | | pnfnre 11025 |
. . . . . . . . . 10
⊢ +∞
∉ ℝ |
150 | 149 | neli 3052 |
. . . . . . . . 9
⊢ ¬
+∞ ∈ ℝ |
151 | | eleq1 2827 |
. . . . . . . . 9
⊢ ((𝑝 pCnt 𝐵) = +∞ → ((𝑝 pCnt 𝐵) ∈ ℝ ↔ +∞ ∈
ℝ)) |
152 | 150, 151 | mtbiri 327 |
. . . . . . . 8
⊢ ((𝑝 pCnt 𝐵) = +∞ → ¬ (𝑝 pCnt 𝐵) ∈ ℝ) |
153 | 109 | nn0red 12303 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ) |
154 | 153 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ) |
155 | 154 | an4s 657 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑝 ∈ ℙ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ) |
156 | 155 | expr 457 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝐵 ≠ 0 → (𝑝 pCnt 𝐵) ∈ ℝ)) |
157 | 156 | necon1bd 2962 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (¬
(𝑝 pCnt 𝐵) ∈ ℝ → 𝐵 = 0)) |
158 | 152, 157 | syl5 34 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ → 𝐵 = 0)) |
159 | 148, 158 | sylbid 239 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0)) |
160 | 159 | rexlimdva 3214 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
(∃𝑝 ∈ ℙ
(𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0)) |
161 | | 0dvds 15995 |
. . . . . 6
⊢ (𝐵 ∈ ℤ → (0
∥ 𝐵 ↔ 𝐵 = 0)) |
162 | 161 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0
∥ 𝐵 ↔ 𝐵 = 0)) |
163 | 160, 162 | sylibrd 258 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
(∃𝑝 ∈ ℙ
(𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)) |
164 | 133, 163 | syl5 34 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
(∀𝑝 ∈ ℙ
(𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)) |
165 | 9, 129, 164 | pm2.61ne 3031 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
(∀𝑝 ∈ ℙ
(𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴 ∥ 𝐵)) |
166 | 4, 165 | impbid 211 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))) |