MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcgcd1 Structured version   Visualization version   GIF version

Theorem pcgcd1 16806
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 7413 . . . 4 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
21oveq2d 7421 . . 3 (𝐵 = 0 → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐴 gcd 0)))
32eqeq1d 2734 . 2 (𝐵 = 0 → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴)))
4 simpl1 1191 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ)
5 simp2 1137 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
65adantr 481 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
7 simpl3 1193 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
8 simprr 771 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
9 simpr 485 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
109necon3ai 2965 . . . . . . . 8 (𝐵 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
118, 10syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
12 gcdn0cl 16439 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
136, 7, 11, 12syl21anc 836 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
1413nnzd 12581 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℤ)
15 gcddvds 16440 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
166, 7, 15syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1716simpld 495 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∥ 𝐴)
18 pcdvdstr 16805 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∥ 𝐴)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴))
194, 14, 6, 17, 18syl13anc 1372 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴))
20 zq 12934 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
216, 20syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ)
22 pcxcl 16790 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
234, 21, 22syl2anc 584 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ*)
24 pczcl 16777 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℕ0)
254, 7, 8, 24syl12anc 835 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℕ0)
2625nn0red 12529 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℝ)
27 pcge0 16791 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤ (𝑃 pCnt 𝐴))
284, 6, 27syl2anc 584 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 0 ≤ (𝑃 pCnt 𝐴))
29 ge0gtmnf 13147 . . . . . . . . . 10 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃 pCnt 𝐴)) → -∞ < (𝑃 pCnt 𝐴))
3023, 28, 29syl2anc 584 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → -∞ < (𝑃 pCnt 𝐴))
31 simprl 769 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
32 xrre 13144 . . . . . . . . 9 ((((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ) ∧ (-∞ < (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) → (𝑃 pCnt 𝐴) ∈ ℝ)
3323, 26, 30, 31, 32syl22anc 837 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ)
34 pnfnre 11251 . . . . . . . . . . . 12 +∞ ∉ ℝ
3534neli 3048 . . . . . . . . . . 11 ¬ +∞ ∈ ℝ
36 pc0 16783 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
374, 36syl 17 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 0) = +∞)
3837eleq1d 2818 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 0) ∈ ℝ ↔ +∞ ∈ ℝ))
3935, 38mtbiri 326 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝑃 pCnt 0) ∈ ℝ)
40 oveq2 7413 . . . . . . . . . . . 12 (𝐴 = 0 → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
4140eleq1d 2818 . . . . . . . . . . 11 (𝐴 = 0 → ((𝑃 pCnt 𝐴) ∈ ℝ ↔ (𝑃 pCnt 0) ∈ ℝ))
4241notbid 317 . . . . . . . . . 10 (𝐴 = 0 → (¬ (𝑃 pCnt 𝐴) ∈ ℝ ↔ ¬ (𝑃 pCnt 0) ∈ ℝ))
4339, 42syl5ibrcom 246 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 = 0 → ¬ (𝑃 pCnt 𝐴) ∈ ℝ))
4443necon2ad 2955 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ∈ ℝ → 𝐴 ≠ 0))
4533, 44mpd 15 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
46 pczdvds 16792 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
474, 6, 45, 46syl12anc 835 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
48 pczcl 16777 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
494, 6, 45, 48syl12anc 835 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
50 pcdvdsb 16798 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
514, 7, 49, 50syl3anc 1371 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
5231, 51mpbid 231 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)
53 prmnn 16607 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
544, 53syl 17 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℕ)
5554, 49nnexpcld 14204 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
5655nnzd 12581 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
57 dvdsgcd 16482 . . . . . . 7 (((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
5856, 6, 7, 57syl3anc 1371 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
5947, 52, 58mp2and 697 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵))
60 pcdvdsb 16798 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
614, 14, 49, 60syl3anc 1371 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
6259, 61mpbird 256 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)))
634, 13pccld 16779 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℕ0)
6463nn0red 12529 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℝ)
6564, 33letri3d 11352 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ ((𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)))))
6619, 62, 65mpbir2and 711 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
6766anassrs 468 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
68 gcdid0 16457 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
695, 68syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 0) = (abs‘𝐴))
7069oveq2d 7421 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt (abs‘𝐴)))
71 pcabs 16804 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
7220, 71sylan2 593 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
73723adant3 1132 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
7470, 73eqtrd 2772 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))
7574adantr 481 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))
763, 67, 75pm2.61ne 3027 1 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  0cc0 11106  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243   < clt 11244  cle 11245  cn 12208  0cn0 12468  cz 12554  cq 12928  cexp 14023  abscabs 15177  cdvds 16193   gcd cgcd 16431  cprime 16604   pCnt cpc 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766
This theorem is referenced by:  pcgcd  16807
  Copyright terms: Public domain W3C validator