MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcgcd1 Structured version   Visualization version   GIF version

Theorem pcgcd1 16848
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 7395 . . . 4 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
21oveq2d 7403 . . 3 (𝐵 = 0 → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐴 gcd 0)))
32eqeq1d 2731 . 2 (𝐵 = 0 → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴)))
4 simpl1 1192 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ)
5 simp2 1137 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
65adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
7 simpl3 1194 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
8 simprr 772 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
9 simpr 484 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
109necon3ai 2950 . . . . . . . 8 (𝐵 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
118, 10syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
12 gcdn0cl 16472 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
136, 7, 11, 12syl21anc 837 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
1413nnzd 12556 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℤ)
15 gcddvds 16473 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
166, 7, 15syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1716simpld 494 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∥ 𝐴)
18 pcdvdstr 16847 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∥ 𝐴)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴))
194, 14, 6, 17, 18syl13anc 1374 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴))
20 zq 12913 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
216, 20syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ)
22 pcxcl 16832 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
234, 21, 22syl2anc 584 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ*)
24 pczcl 16819 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℕ0)
254, 7, 8, 24syl12anc 836 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℕ0)
2625nn0red 12504 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℝ)
27 pcge0 16833 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤ (𝑃 pCnt 𝐴))
284, 6, 27syl2anc 584 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 0 ≤ (𝑃 pCnt 𝐴))
29 ge0gtmnf 13132 . . . . . . . . . 10 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃 pCnt 𝐴)) → -∞ < (𝑃 pCnt 𝐴))
3023, 28, 29syl2anc 584 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → -∞ < (𝑃 pCnt 𝐴))
31 simprl 770 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
32 xrre 13129 . . . . . . . . 9 ((((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ) ∧ (-∞ < (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) → (𝑃 pCnt 𝐴) ∈ ℝ)
3323, 26, 30, 31, 32syl22anc 838 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ)
34 pnfnre 11215 . . . . . . . . . . . 12 +∞ ∉ ℝ
3534neli 3031 . . . . . . . . . . 11 ¬ +∞ ∈ ℝ
36 pc0 16825 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
374, 36syl 17 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 0) = +∞)
3837eleq1d 2813 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 0) ∈ ℝ ↔ +∞ ∈ ℝ))
3935, 38mtbiri 327 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝑃 pCnt 0) ∈ ℝ)
40 oveq2 7395 . . . . . . . . . . . 12 (𝐴 = 0 → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
4140eleq1d 2813 . . . . . . . . . . 11 (𝐴 = 0 → ((𝑃 pCnt 𝐴) ∈ ℝ ↔ (𝑃 pCnt 0) ∈ ℝ))
4241notbid 318 . . . . . . . . . 10 (𝐴 = 0 → (¬ (𝑃 pCnt 𝐴) ∈ ℝ ↔ ¬ (𝑃 pCnt 0) ∈ ℝ))
4339, 42syl5ibrcom 247 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 = 0 → ¬ (𝑃 pCnt 𝐴) ∈ ℝ))
4443necon2ad 2940 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ∈ ℝ → 𝐴 ≠ 0))
4533, 44mpd 15 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
46 pczdvds 16834 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
474, 6, 45, 46syl12anc 836 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
48 pczcl 16819 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
494, 6, 45, 48syl12anc 836 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
50 pcdvdsb 16840 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
514, 7, 49, 50syl3anc 1373 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
5231, 51mpbid 232 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)
53 prmnn 16644 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
544, 53syl 17 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℕ)
5554, 49nnexpcld 14210 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
5655nnzd 12556 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
57 dvdsgcd 16514 . . . . . . 7 (((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
5856, 6, 7, 57syl3anc 1373 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
5947, 52, 58mp2and 699 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵))
60 pcdvdsb 16840 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
614, 14, 49, 60syl3anc 1373 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
6259, 61mpbird 257 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)))
634, 13pccld 16821 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℕ0)
6463nn0red 12504 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℝ)
6564, 33letri3d 11316 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ ((𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)))))
6619, 62, 65mpbir2and 713 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
6766anassrs 467 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
68 gcdid0 16490 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
695, 68syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 0) = (abs‘𝐴))
7069oveq2d 7403 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt (abs‘𝐴)))
71 pcabs 16846 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
7220, 71sylan2 593 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
73723adant3 1132 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
7470, 73eqtrd 2764 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))
7574adantr 480 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))
763, 67, 75pm2.61ne 3010 1 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  cn 12186  0cn0 12442  cz 12529  cq 12907  cexp 14026  abscabs 15200  cdvds 16222   gcd cgcd 16464  cprime 16641   pCnt cpc 16807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808
This theorem is referenced by:  pcgcd  16849
  Copyright terms: Public domain W3C validator