MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcgcd1 Structured version   Visualization version   GIF version

Theorem pcgcd1 16808
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 7361 . . . 4 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
21oveq2d 7369 . . 3 (𝐵 = 0 → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐴 gcd 0)))
32eqeq1d 2731 . 2 (𝐵 = 0 → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴)))
4 simpl1 1192 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ)
5 simp2 1137 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
65adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
7 simpl3 1194 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
8 simprr 772 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
9 simpr 484 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
109necon3ai 2950 . . . . . . . 8 (𝐵 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
118, 10syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
12 gcdn0cl 16432 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
136, 7, 11, 12syl21anc 837 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
1413nnzd 12517 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℤ)
15 gcddvds 16433 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
166, 7, 15syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
1716simpld 494 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∥ 𝐴)
18 pcdvdstr 16807 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∥ 𝐴)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴))
194, 14, 6, 17, 18syl13anc 1374 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴))
20 zq 12874 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
216, 20syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ)
22 pcxcl 16792 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
234, 21, 22syl2anc 584 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ*)
24 pczcl 16779 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℕ0)
254, 7, 8, 24syl12anc 836 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℕ0)
2625nn0red 12465 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℝ)
27 pcge0 16793 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤ (𝑃 pCnt 𝐴))
284, 6, 27syl2anc 584 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 0 ≤ (𝑃 pCnt 𝐴))
29 ge0gtmnf 13093 . . . . . . . . . 10 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃 pCnt 𝐴)) → -∞ < (𝑃 pCnt 𝐴))
3023, 28, 29syl2anc 584 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → -∞ < (𝑃 pCnt 𝐴))
31 simprl 770 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
32 xrre 13090 . . . . . . . . 9 ((((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ) ∧ (-∞ < (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) → (𝑃 pCnt 𝐴) ∈ ℝ)
3323, 26, 30, 31, 32syl22anc 838 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ)
34 pnfnre 11175 . . . . . . . . . . . 12 +∞ ∉ ℝ
3534neli 3031 . . . . . . . . . . 11 ¬ +∞ ∈ ℝ
36 pc0 16785 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
374, 36syl 17 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 0) = +∞)
3837eleq1d 2813 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 0) ∈ ℝ ↔ +∞ ∈ ℝ))
3935, 38mtbiri 327 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝑃 pCnt 0) ∈ ℝ)
40 oveq2 7361 . . . . . . . . . . . 12 (𝐴 = 0 → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
4140eleq1d 2813 . . . . . . . . . . 11 (𝐴 = 0 → ((𝑃 pCnt 𝐴) ∈ ℝ ↔ (𝑃 pCnt 0) ∈ ℝ))
4241notbid 318 . . . . . . . . . 10 (𝐴 = 0 → (¬ (𝑃 pCnt 𝐴) ∈ ℝ ↔ ¬ (𝑃 pCnt 0) ∈ ℝ))
4339, 42syl5ibrcom 247 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 = 0 → ¬ (𝑃 pCnt 𝐴) ∈ ℝ))
4443necon2ad 2940 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ∈ ℝ → 𝐴 ≠ 0))
4533, 44mpd 15 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
46 pczdvds 16794 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
474, 6, 45, 46syl12anc 836 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
48 pczcl 16779 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
494, 6, 45, 48syl12anc 836 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
50 pcdvdsb 16800 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
514, 7, 49, 50syl3anc 1373 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
5231, 51mpbid 232 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)
53 prmnn 16604 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
544, 53syl 17 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℕ)
5554, 49nnexpcld 14171 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
5655nnzd 12517 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
57 dvdsgcd 16474 . . . . . . 7 (((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
5856, 6, 7, 57syl3anc 1373 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
5947, 52, 58mp2and 699 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵))
60 pcdvdsb 16800 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
614, 14, 49, 60syl3anc 1373 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
6259, 61mpbird 257 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)))
634, 13pccld 16781 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℕ0)
6463nn0red 12465 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℝ)
6564, 33letri3d 11277 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ ((𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)))))
6619, 62, 65mpbir2and 713 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
6766anassrs 467 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
68 gcdid0 16450 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
695, 68syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 0) = (abs‘𝐴))
7069oveq2d 7369 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt (abs‘𝐴)))
71 pcabs 16806 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
7220, 71sylan2 593 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
73723adant3 1132 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
7470, 73eqtrd 2764 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))
7574adantr 480 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))
763, 67, 75pm2.61ne 3010 1 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  cn 12147  0cn0 12403  cz 12490  cq 12868  cexp 13987  abscabs 15160  cdvds 16182   gcd cgcd 16424  cprime 16601   pCnt cpc 16767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-q 12869  df-rp 12913  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-dvds 16183  df-gcd 16425  df-prm 16602  df-pc 16768
This theorem is referenced by:  pcgcd  16809
  Copyright terms: Public domain W3C validator