Proof of Theorem pcgcd1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7440 | . . . 4
⊢ (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0)) | 
| 2 | 1 | oveq2d 7448 | . . 3
⊢ (𝐵 = 0 → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐴 gcd 0))) | 
| 3 | 2 | eqeq1d 2738 | . 2
⊢ (𝐵 = 0 → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))) | 
| 4 |  | simpl1 1191 | . . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ) | 
| 5 |  | simp2 1137 | . . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈
ℤ) | 
| 6 | 5 | adantr 480 | . . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ) | 
| 7 |  | simpl3 1193 | . . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ) | 
| 8 |  | simprr 772 | . . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) | 
| 9 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0) | 
| 10 | 9 | necon3ai 2964 | . . . . . . . 8
⊢ (𝐵 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | 
| 11 | 8, 10 | syl 17 | . . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | 
| 12 |  | gcdn0cl 16540 | . . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 13 | 6, 7, 11, 12 | syl21anc 837 | . . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 14 | 13 | nnzd 12642 | . . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℤ) | 
| 15 |  | gcddvds 16541 | . . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 16 | 6, 7, 15 | syl2anc 584 | . . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 17 | 16 | simpld 494 | . . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∥ 𝐴) | 
| 18 |  | pcdvdstr 16915 | . . . . 5
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∥ 𝐴)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴)) | 
| 19 | 4, 14, 6, 17, 18 | syl13anc 1373 | . . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴)) | 
| 20 |  | zq 12997 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℚ) | 
| 21 | 6, 20 | syl 17 | . . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ) | 
| 22 |  | pcxcl 16900 | . . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈
ℝ*) | 
| 23 | 4, 21, 22 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈
ℝ*) | 
| 24 |  | pczcl 16887 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈
ℕ0) | 
| 25 | 4, 7, 8, 24 | syl12anc 836 | . . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈
ℕ0) | 
| 26 | 25 | nn0red 12590 | . . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℝ) | 
| 27 |  | pcge0 16901 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤
(𝑃 pCnt 𝐴)) | 
| 28 | 4, 6, 27 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 0 ≤ (𝑃 pCnt 𝐴)) | 
| 29 |  | ge0gtmnf 13215 | . . . . . . . . . 10
⊢ (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ 0 ≤
(𝑃 pCnt 𝐴)) → -∞ < (𝑃 pCnt 𝐴)) | 
| 30 | 23, 28, 29 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → -∞ < (𝑃 pCnt 𝐴)) | 
| 31 |  | simprl 770 | . . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) | 
| 32 |  | xrre 13212 | . . . . . . . . 9
⊢ ((((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ) ∧ (-∞ <
(𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) → (𝑃 pCnt 𝐴) ∈ ℝ) | 
| 33 | 23, 26, 30, 31, 32 | syl22anc 838 | . . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ) | 
| 34 |  | pnfnre 11303 | . . . . . . . . . . . 12
⊢ +∞
∉ ℝ | 
| 35 | 34 | neli 3047 | . . . . . . . . . . 11
⊢  ¬
+∞ ∈ ℝ | 
| 36 |  | pc0 16893 | . . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) =
+∞) | 
| 37 | 4, 36 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 0) = +∞) | 
| 38 | 37 | eleq1d 2825 | . . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 0) ∈ ℝ ↔ +∞
∈ ℝ)) | 
| 39 | 35, 38 | mtbiri 327 | . . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝑃 pCnt 0) ∈ ℝ) | 
| 40 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝐴 = 0 → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0)) | 
| 41 | 40 | eleq1d 2825 | . . . . . . . . . . 11
⊢ (𝐴 = 0 → ((𝑃 pCnt 𝐴) ∈ ℝ ↔ (𝑃 pCnt 0) ∈ ℝ)) | 
| 42 | 41 | notbid 318 | . . . . . . . . . 10
⊢ (𝐴 = 0 → (¬ (𝑃 pCnt 𝐴) ∈ ℝ ↔ ¬ (𝑃 pCnt 0) ∈
ℝ)) | 
| 43 | 39, 42 | syl5ibrcom 247 | . . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 = 0 → ¬ (𝑃 pCnt 𝐴) ∈ ℝ)) | 
| 44 | 43 | necon2ad 2954 | . . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ∈ ℝ → 𝐴 ≠ 0)) | 
| 45 | 33, 44 | mpd 15 | . . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0) | 
| 46 |  | pczdvds 16902 | . . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) | 
| 47 | 4, 6, 45, 46 | syl12anc 836 | . . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) | 
| 48 |  | pczcl 16887 | . . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈
ℕ0) | 
| 49 | 4, 6, 45, 48 | syl12anc 836 | . . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈
ℕ0) | 
| 50 |  | pcdvdsb 16908 | . . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)) | 
| 51 | 4, 7, 49, 50 | syl3anc 1372 | . . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)) | 
| 52 | 31, 51 | mpbid 232 | . . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) | 
| 53 |  | prmnn 16712 | . . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 54 | 4, 53 | syl 17 | . . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℕ) | 
| 55 | 54, 49 | nnexpcld 14285 | . . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) | 
| 56 | 55 | nnzd 12642 | . . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) | 
| 57 |  | dvdsgcd 16582 | . . . . . . 7
⊢ (((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵))) | 
| 58 | 56, 6, 7, 57 | syl3anc 1372 | . . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵))) | 
| 59 | 47, 52, 58 | mp2and 699 | . . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)) | 
| 60 |  | pcdvdsb 16908 | . . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵))) | 
| 61 | 4, 14, 49, 60 | syl3anc 1372 | . . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵))) | 
| 62 | 59, 61 | mpbird 257 | . . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵))) | 
| 63 | 4, 13 | pccld 16889 | . . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈
ℕ0) | 
| 64 | 63 | nn0red 12590 | . . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℝ) | 
| 65 | 64, 33 | letri3d 11404 | . . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ ((𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵))))) | 
| 66 | 19, 62, 65 | mpbir2and 713 | . . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴)) | 
| 67 | 66 | anassrs 467 | . 2
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴)) | 
| 68 |  | gcdid0 16558 | . . . . . 6
⊢ (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴)) | 
| 69 | 5, 68 | syl 17 | . . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 0) = (abs‘𝐴)) | 
| 70 | 69 | oveq2d 7448 | . . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt (abs‘𝐴))) | 
| 71 |  | pcabs 16914 | . . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴)) | 
| 72 | 20, 71 | sylan2 593 | . . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴)) | 
| 73 | 72 | 3adant3 1132 | . . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴)) | 
| 74 | 70, 73 | eqtrd 2776 | . . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴)) | 
| 75 | 74 | adantr 480 | . 2
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴)) | 
| 76 | 3, 67, 75 | pm2.61ne 3026 | 1
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴)) |