![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsmndex1 | Structured version Visualization version GIF version |
Description: The base set 𝐵 of the constructed monoid 𝑆 is not a submonoid of the monoid 𝑀 of endofunctions on set ℕ0, although 𝑀 ∈ Mnd and 𝑆 ∈ Mnd and 𝐵 ⊆ (Base‘𝑀) hold. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
Ref | Expression |
---|---|
nsmndex1 | ⊢ 𝐵 ∉ (SubMnd‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.m | . . . . . . 7 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
2 | smndex1ibas.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
3 | smndex1ibas.i | . . . . . . 7 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
4 | smndex1ibas.g | . . . . . . 7 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
5 | smndex1mgm.b | . . . . . . 7 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
6 | smndex1mgm.s | . . . . . . 7 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | smndex1n0mnd 18938 | . . . . . 6 ⊢ (0g‘𝑀) ∉ 𝐵 |
8 | 7 | neli 3046 | . . . . 5 ⊢ ¬ (0g‘𝑀) ∈ 𝐵 |
9 | 8 | intnan 486 | . . . 4 ⊢ ¬ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵) |
10 | 9 | intnan 486 | . . 3 ⊢ ¬ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵)) |
11 | eqid 2735 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
12 | eqid 2735 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
13 | 11, 12 | issubmndb 18831 | . . 3 ⊢ (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵))) |
14 | 10, 13 | mtbir 323 | . 2 ⊢ ¬ 𝐵 ∈ (SubMnd‘𝑀) |
15 | 14 | nelir 3047 | 1 ⊢ 𝐵 ∉ (SubMnd‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∉ wnel 3044 ∪ cun 3961 ⊆ wss 3963 {csn 4631 ∪ ciun 4996 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 ..^cfzo 13691 mod cmo 13906 Basecbs 17245 ↾s cress 17274 0gc0g 17486 Mndcmnd 18760 SubMndcsubmnd 18808 EndoFMndcefmnd 18894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-tset 17317 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-efmnd 18895 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |