| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsmndex1 | Structured version Visualization version GIF version | ||
| Description: The base set 𝐵 of the constructed monoid 𝑆 is not a submonoid of the monoid 𝑀 of endofunctions on set ℕ0, although 𝑀 ∈ Mnd and 𝑆 ∈ Mnd and 𝐵 ⊆ (Base‘𝑀) hold. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| nsmndex1 | ⊢ 𝐵 ∉ (SubMnd‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | . . . . . . 7 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 2 | smndex1ibas.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | . . . . . . 7 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 4 | smndex1ibas.g | . . . . . . 7 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 5 | smndex1mgm.b | . . . . . . 7 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 6 | smndex1mgm.s | . . . . . . 7 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | smndex1n0mnd 18815 | . . . . . 6 ⊢ (0g‘𝑀) ∉ 𝐵 |
| 8 | 7 | neli 3034 | . . . . 5 ⊢ ¬ (0g‘𝑀) ∈ 𝐵 |
| 9 | 8 | intnan 486 | . . . 4 ⊢ ¬ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵) |
| 10 | 9 | intnan 486 | . . 3 ⊢ ¬ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵)) |
| 11 | eqid 2731 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 12 | eqid 2731 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 13 | 11, 12 | issubmndb 18708 | . . 3 ⊢ (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵))) |
| 14 | 10, 13 | mtbir 323 | . 2 ⊢ ¬ 𝐵 ∈ (SubMnd‘𝑀) |
| 15 | 14 | nelir 3035 | 1 ⊢ 𝐵 ∉ (SubMnd‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∪ cun 3895 ⊆ wss 3897 {csn 4571 ∪ ciun 4936 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 ..^cfzo 13549 mod cmo 13768 Basecbs 17115 ↾s cress 17136 0gc0g 17338 Mndcmnd 18637 SubMndcsubmnd 18685 EndoFMndcefmnd 18771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-tset 17175 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-efmnd 18772 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |