Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > renemnf | Structured version Visualization version GIF version |
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renemnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfnre 11027 | . . . 4 ⊢ -∞ ∉ ℝ | |
2 | 1 | neli 3052 | . . 3 ⊢ ¬ -∞ ∈ ℝ |
3 | eleq1 2827 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2974 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 ℝcr 10879 -∞cmnf 11016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 |
This theorem is referenced by: renemnfd 11036 renfdisj 11044 xrnemnf 12862 rexneg 12954 rexadd 12975 xaddnemnf 12979 xaddcom 12983 xaddid1 12984 xnegdi 12991 xpncan 12994 xleadd1a 12996 rexmul 13014 xadddilem 13037 xrs1mnd 20645 xrs10 20646 isxmet2d 23489 imasdsf1olem 23535 xaddeq0 31085 icorempo 35531 infrpge 42897 infleinflem1 42916 xrre4 42958 climxrre 43298 |
Copyright terms: Public domain | W3C validator |