| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renemnf | Structured version Visualization version GIF version | ||
| Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renemnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 11224 | . . . 4 ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli 3032 | . . 3 ⊢ ¬ -∞ ∈ ℝ |
| 3 | eleq1 2817 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2955 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ℝcr 11074 -∞cmnf 11213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 |
| This theorem is referenced by: renemnfd 11233 renfdisj 11241 xrnemnf 13084 rexneg 13178 rexadd 13199 xaddnemnf 13203 xaddcom 13207 xaddrid 13208 xnegdi 13215 xpncan 13218 xleadd1a 13220 rexmul 13238 xadddilem 13261 xrs1mnd 21328 xrs10 21329 isxmet2d 24222 imasdsf1olem 24268 xaddeq0 32683 icorempo 37346 infrpge 45354 infleinflem1 45373 xrre4 45414 climxrre 45755 |
| Copyright terms: Public domain | W3C validator |