![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renemnf | Structured version Visualization version GIF version |
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renemnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfnre 11333 | . . . 4 ⊢ -∞ ∉ ℝ | |
2 | 1 | neli 3054 | . . 3 ⊢ ¬ -∞ ∈ ℝ |
3 | eleq1 2832 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ)) | |
4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
5 | 4 | necon2ai 2976 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ℝcr 11183 -∞cmnf 11322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 |
This theorem is referenced by: renemnfd 11342 renfdisj 11350 xrnemnf 13180 rexneg 13273 rexadd 13294 xaddnemnf 13298 xaddcom 13302 xaddrid 13303 xnegdi 13310 xpncan 13313 xleadd1a 13315 rexmul 13333 xadddilem 13356 xrs1mnd 21445 xrs10 21446 isxmet2d 24358 imasdsf1olem 24404 xaddeq0 32760 icorempo 37317 infrpge 45266 infleinflem1 45285 xrre4 45326 climxrre 45671 |
Copyright terms: Public domain | W3C validator |