MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renemnf Structured version   Visualization version   GIF version

Theorem renemnf 11307
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renemnf (𝐴 ∈ ℝ → 𝐴 ≠ -∞)

Proof of Theorem renemnf
StepHypRef Expression
1 mnfnre 11301 . . . 4 -∞ ∉ ℝ
21neli 3045 . . 3 ¬ -∞ ∈ ℝ
3 eleq1 2826 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ))
42, 3mtbiri 327 . 2 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
54necon2ai 2967 1 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  wne 2937  cr 11151  -∞cmnf 11290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295
This theorem is referenced by:  renemnfd  11310  renfdisj  11318  xrnemnf  13156  rexneg  13249  rexadd  13270  xaddnemnf  13274  xaddcom  13278  xaddrid  13279  xnegdi  13286  xpncan  13289  xleadd1a  13291  rexmul  13309  xadddilem  13332  xrs1mnd  21439  xrs10  21440  isxmet2d  24352  imasdsf1olem  24398  xaddeq0  32763  icorempo  37333  infrpge  45300  infleinflem1  45319  xrre4  45360  climxrre  45705
  Copyright terms: Public domain W3C validator