MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renemnf Structured version   Visualization version   GIF version

Theorem renemnf 10955
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renemnf (𝐴 ∈ ℝ → 𝐴 ≠ -∞)

Proof of Theorem renemnf
StepHypRef Expression
1 mnfnre 10949 . . . 4 -∞ ∉ ℝ
21neli 3050 . . 3 ¬ -∞ ∈ ℝ
3 eleq1 2826 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ))
42, 3mtbiri 326 . 2 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
54necon2ai 2972 1 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  cr 10801  -∞cmnf 10938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943
This theorem is referenced by:  renemnfd  10958  renfdisj  10966  xrnemnf  12782  rexneg  12874  rexadd  12895  xaddnemnf  12899  xaddcom  12903  xaddid1  12904  xnegdi  12911  xpncan  12914  xleadd1a  12916  rexmul  12934  xadddilem  12957  xrs1mnd  20548  xrs10  20549  isxmet2d  23388  imasdsf1olem  23434  xaddeq0  30978  icorempo  35449  infrpge  42780  infleinflem1  42799  xrre4  42841  climxrre  43181
  Copyright terms: Public domain W3C validator