MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renemnf Structured version   Visualization version   GIF version

Theorem renemnf 11199
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renemnf (𝐴 ∈ ℝ → 𝐴 ≠ -∞)

Proof of Theorem renemnf
StepHypRef Expression
1 mnfnre 11193 . . . 4 -∞ ∉ ℝ
21neli 3031 . . 3 ¬ -∞ ∈ ℝ
3 eleq1 2816 . . 3 (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ))
42, 3mtbiri 327 . 2 (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ)
54necon2ai 2954 1 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cr 11043  -∞cmnf 11182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187
This theorem is referenced by:  renemnfd  11202  renfdisj  11210  xrnemnf  13053  rexneg  13147  rexadd  13168  xaddnemnf  13172  xaddcom  13176  xaddrid  13177  xnegdi  13184  xpncan  13187  xleadd1a  13189  rexmul  13207  xadddilem  13230  xrs1mnd  21382  xrs10  21383  isxmet2d  24248  imasdsf1olem  24294  xaddeq0  32726  icorempo  37332  infrpge  45340  infleinflem1  45359  xrre4  45400  climxrre  45741
  Copyright terms: Public domain W3C validator