| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renemnf | Structured version Visualization version GIF version | ||
| Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renemnf | ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 11158 | . . . 4 ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli 3031 | . . 3 ⊢ ¬ -∞ ∈ ℝ |
| 3 | eleq1 2816 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ↔ -∞ ∈ ℝ)) | |
| 4 | 2, 3 | mtbiri 327 | . 2 ⊢ (𝐴 = -∞ → ¬ 𝐴 ∈ ℝ) |
| 5 | 4 | necon2ai 2954 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ℝcr 11008 -∞cmnf 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 |
| This theorem is referenced by: renemnfd 11167 renfdisj 11175 xrnemnf 13019 rexneg 13113 rexadd 13134 xaddnemnf 13138 xaddcom 13142 xaddrid 13143 xnegdi 13150 xpncan 13153 xleadd1a 13155 rexmul 13173 xadddilem 13196 xrs1mnd 21347 xrs10 21348 isxmet2d 24213 imasdsf1olem 24259 xaddeq0 32696 icorempo 37329 infrpge 45335 infleinflem1 45353 xrre4 45394 climxrre 45735 |
| Copyright terms: Public domain | W3C validator |